EI、Scopus 收录
中文核心期刊
Hongzhang Cao, Shi Liu, Fan Jiang, Jing Liu. The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 848-857. DOI: 10.6052/0459-1879-2007-6-2006-430
Citation: Hongzhang Cao, Shi Liu, Fan Jiang, Jing Liu. The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 848-857. DOI: 10.6052/0459-1879-2007-6-2006-430

The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase

  • Received Date: September 10, 2006
  • Revised Date: September 20, 2007
  • Based on the theory in the rigid ice model, a new 1-D numerical icesegregating model is developed for freezing process in saturated, granularsoil. In this model according as O'Nell {\&} Miller' proposition, liquidwater is attracted toward the soil grain's surface and the attractive forceis greater for liquid than for air or ice. The strength of this attractiondecays with distance from the surface. A grain immersed in water issurrounded by a ``hydrostatic pressure field'' caused by this attraction.The water in the effective range of the ``hydrostatic pressure field''called adsorbed film. The water pressure in adsorbed film is equal to thepressure caused by surface adsorption plus the porous water pressure outsidethe film. In unfrozen soil, grains contact to each other through theadsorbed film. The pressure at the middle line of the adsorbed water film isequal to the contact stress between grains. In the saturated soil freezingprocess, the porous water outside the adsorbed film first freeze, then theice-water interface gradually enter into the film with the temperature drop.The adsorbed film between grains will be frozen while the temperature isless than the phase changing temperature corresponding to the grains contactstress. According to the states of porous water and the water film betweengrains, the freezing soil could be divided into frozen section, phasechanging section that called frozen fringe and unfrozen section. The watertransferring is ignored in frozen section and the phase-exchange not occursin unfrozen section. The ice segregating process could be considered as aquasi-steady process because that the temperature change slowly, then theassumption that phase and force are local equilibrium could be introduced.The governing equations are deduced from conservation of mass and energy andthe relation of porosity and effective stress is considered as approximatelinear. The relation of (I/\partialuw)T and (I/T)uw is deduced based onClapeyron equation then (I/T)uw could takeplace of (I/T)uw in numerical simulation. Therelation of temperature T and the porouswater pressure uw in the express I(T,uw) is deducedby similar method. When the water film between soil granules begins tofreeze to separate soil skeleton, ice segregating process initiated. Thatmeans the criterion of new segregated ice initiation is that the maximumwater pressure at ice-water interface in the frozen fringe become equal orgreater than the total load. In the ice segregating process, the porouswater pressure at the warm side of the warmest segregated ice drop with thetemperature lower. Thus cause that the moisture in the frozen fringe andunfrozen section transfer to the warm side of the segregated ice.1-D freezing process was simulated with similar condition to theexperiment (Xu et al., 1995). The calculated result showed the ice layers. Thetrend of heave change and the distribution of ice layers are similar to theexperiment phenomena.
  • Related Articles

    [1]Li Wenqi, Xiang Zhong, Li Haoran, Ren Zhongkai, Wang Jiadong. STUDY ON THE PREDICTION MODEL OF THE INTRINSIC DAMAGE DISSIPATION LIFE OF TWO-STAGE VARIABLE AMPLITUDE STRAIN FATIGUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 149-156. DOI: 10.6052/0459-1879-23-314
    [2]Xiangyang Cui, Kecheng Hong. A MULTIAXIAL LOW-CYCLE FATIGUE MODEL CONSIDERING NON-PROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 863-872. DOI: 10.6052/0459-1879-18-347
    [3]Zhao Ernian, Qu Weilian. A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 944-952. DOI: 10.6052/0459-1879-15-377
    [4]Guo Hongbao, Wang Bo, Jia Purong, Yang Chengpeng. MESOSCOPIC DAMAGE BEHAVIORS OF PLAINWOVEN CERAMIC COMPOSITE UNDER IN-PLANE SHEAR LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 361-368. DOI: 10.6052/0459-1879-15-133
    [5]Ding Zhiping, Chen Jiping, Wang Tengfei, Zhao Ping. STUDY ON LOW CYCLE FATIGUE OF SINGLE CRYSTAL NI-BASED SUPERALLOY UNDER MULTIAXIAL NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 326-333. DOI: 10.6052/0459-1879-2012-2-20120216
    [6]Dongting Wang J.-Z. Hong Tanhui Wu. Additional contact constraint method in impact stage of planar flexible multi-body dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1157-1161. DOI: 10.6052/0459-1879-2011-6-lxxb2011-016
    [7]A STUDY ON THE ELASTO-PLASTIC MECHANICAL BEHAVIOR OF TWO PHASE MEDIA UNDER NONPROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 185-192. DOI: 10.6052/0459-1879-1999-2-1995-021
    [8]CONSTITUTIVE MODELING OF ANISOTHERMAL NONPROPORTIONAL CYCLIC VISCOPLASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2): 251-256. DOI: 10.6052/0459-1879-1996-2-1995-328
    [9]A MICROMECHANICS CONSTITUTIVE MODEL FOR FORWARD TRANSFORMATION PLASTICITY WITH SHEAR AND DILATATION EFFECT: Ⅰ, GENERALIZED NONPROPORTIONAL LOADING HISTORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 299-308. DOI: 10.6052/0459-1879-1991-3-1995-841
    [10]THE UNIFICATION OF DAMAGE WITH FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 123-128. DOI: 10.6052/0459-1879-1991-1-1995-818
  • Cited by

    Periodical cited type(32)

    1. 宋杰,刘乐乐,刘涛,张永超,杨磊,万义钊. 海洋含气土高应力加卸载变形特征与渗流规律. 力学学报. 2025(02): 545-558 . 本站查看
    2. 周瑞,白冰,杨光昌. 基于颗粒重组理论的水合物沉积物温-压耦合热力学模型. 岩土工程学报. 2024(06): 1226-1235 .
    3. 张玉,陶子卓,栾雅琳,狄圣杰,林亮. 分解条件下含可燃冰砂土–开采井界面弱化规律试验研究. 岩石力学与工程学报. 2024(S2): 3988-3999 .
    4. 刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 .
    5. 张艺博,温欣,靳继凯,赵春晖. 一种考虑胶结与损伤影响的深海能源土弹塑性本构模型. 工业技术与职业教育. 2023(05): 15-19 .
    6. 于航,戚承志,朱守东,赵发,王晓娇. 深海能源土抗剪强度的理论研究. 长江科学院院报. 2022(05): 119-124+131 .
    7. 康宇. 三轴压缩下含瓦斯水合物煤体力学特性的离散元研究. 煤炭技术. 2022(10): 106-110 .
    8. 赵亚鹏,刘乐乐,孔亮,桑松魁,王兴,刘佳棋. 黏质及砂质能源土统一的弹塑性本构模型. 岩石力学与工程学报. 2022(12): 2579-2591 .
    9. 吴杨,崔杰,廖静容,兵动正幸. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究. 岩土工程学报. 2021(01): 156-164 .
    10. 梁文鹏,周家作,陈盼,韦昌富. 基于均匀化理论的含水合物土弹塑性本构模型. 岩土力学. 2021(02): 481-490 .
    11. 周远,韦昌富,周家作,陈盼,魏厚振. 气体水合物喷射合成与直剪试验系统的研制与应用. 岩土力学. 2021(08): 2311-2320 .
    12. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 . 本站查看
    13. 朱一铭,王嘉君,徐源鸿,应展烽. CH_4和CO_2的水合物沉积物力学特性对比研究. 非常规油气. 2021(05): 1-8 .
    14. 王辉,周世琛,陈宇琪,周博,薛世峰. 基于均匀化理论的水合物沉积物修正Duncan-Chang本构模型. 中南大学学报(自然科学版). 2021(09): 3251-3263 .
    15. 周家作,韦昌富,魏厚振,杨周洁,李力昕,李彦龙,丁根荣. 多功能水合物沉积物三轴试验系统的研制与应用. 岩土力学. 2020(01): 342-352 .
    16. 蔡建超,夏宇轩,徐赛,田海涛. 含水合物沉积物多相渗流特性研究进展. 力学学报. 2020(01): 208-223 . 本站查看
    17. 杨柳,石富坤,张旭辉,鲁晓兵. 含水合物粉质黏土压裂成缝特征实验研究. 力学学报. 2020(01): 224-234 . 本站查看
    18. 袁益龙,许天福,辛欣,夏盈莉,李冰. 海洋天然气水合物降压开采地层井壁力学稳定性分析. 力学学报. 2020(02): 544-555 . 本站查看
    19. 刘林,姚仰平,张旭辉,鲁晓兵,王淑云. 含水合物沉积物的弹塑性本构模型. 力学学报. 2020(02): 556-566 . 本站查看
    20. 李彦龙,刘昌岭,廖华林,董林,卜庆涛,刘志超. 泥质粉砂沉积物—天然气水合物混合体系的力学特性. 天然气工业. 2020(08): 159-168 .
    21. 韦昌富,颜荣涛,田慧会,周家作,李文涛,马田田,陈盼. 天然气水合物开采的土力学问题:现状与挑战. 天然气工业. 2020(08): 116-132 .
    22. 刘乐乐,刘昌岭,孟庆国,张永超. 分形理论在天然气水合物研究领域的应用. 海洋地质前沿. 2020(09): 11-22 .
    23. 王凡,王国荣,钟林,贺湘伟. 围压作用下水合物沉积物单齿破碎数值模拟研究. 中国造船. 2020(04): 245-254 .
    24. 王辉,周世琛,周博,薛世峰,林英松,吴海明. 不同破坏准则下水合物沉积物的统计损伤模型. 岩土力学. 2020(12): 4015-4026+4044 .
    25. 鲁晓兵,张旭辉,王淑云. 天然气水合物开采相关的安全性研究进展. 中国科学:物理学 力学 天文学. 2019(03): 7-37 .
    26. 徐海良,胡文港,杨放琼,孔维阳. 海底天然气水合物绞吸式开采绞刀切削力特性. 计算力学学报. 2019(01): 138-143 .
    27. 李栋梁,王哲,吴起,卢静生,梁德青. 天然气水合物储层力学特性研究进展. 新能源进展. 2019(01): 40-49 .
    28. 周博,王宏乾,王辉,薛世峰. 水合物沉积物的力学本构模型及参数离散元计算. 应用数学和力学. 2019(04): 375-385 .
    29. DONG Lin,LI Yanlong,LIU Changling,LIAO Hualin,CHEN Guoqi,CHEN Qiang,LIU Lele,HU Gaowei. Mechanical Properties of Methane Hydrate-Bearing Interlayered Sediments. Journal of Ocean University of China. 2019(06): 1344-1350 .
    30. 刘乐乐,张宏源,刘昌岭,李彦龙,李承峰. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用. 海洋地质与第四纪地质. 2017(05): 159-165 .
    31. 张金华,魏伟,肖红平,彭涌,张巧珍. 含水合物沉积物合成方法及其对热、力学性质影响的研究进展. 科学技术与工程. 2017(26): 146-155 .
    32. 陈佳艺. 含水合物沉积物屈服强度变化规律. 山东化工. 2017(21): 58-60 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (1982) PDF downloads (778) Cited by(51)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return