EI、Scopus 收录
中文核心期刊
Dawei Chen, Xiaoliang Ma, Guowei Yang. Numerical simulation of windward vortex shocks about supersonic slender[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 721-732. DOI: 10.6052/0459-1879-2006-6-2005-251
Citation: Dawei Chen, Xiaoliang Ma, Guowei Yang. Numerical simulation of windward vortex shocks about supersonic slender[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 721-732. DOI: 10.6052/0459-1879-2006-6-2005-251

Numerical simulation of windward vortex shocks about supersonic slender

  • Received Date: May 24, 2005
  • Revised Date: November 28, 2005
  • Vortex shocks may be found inside the bow shock wave onsupersonic slender bodies at a high angles of attack. A numerical studyis performed by using Reynolds-averaged Navier-Stokes equations ,k\omega-sst and Badwin-Lomax turbulence models. It is shown that thevortex shocks are associated with the virtual double cone-like deflection of thesupersonic stream by the primary vortices.
  • Related Articles

    [1]Zhao Yong, Ge Yixuan, Chen Xinmeng, Chen Zhenyu, Wang Lei. MULTI-DISTRIBUTION REGULARIZED LATTICE BOLTZMANN METHOD FOR CONVECTION-DIFFUSION-SYSTEM-BASED INCOMPRESSIBLE NAVIER-STOKES EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-14. DOI: 10.6052/0459-1879-25-096
    [2]Du Yiming, Gao Zhenghong, Shu Bowen, Qiu Fusheng, Song Chenxing. THREE-DIMENSIONAL SHOCK SEPARATED FLOW CORRECTIONS OF k-ω SST MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1485-1501. DOI: 10.6052/0459-1879-22-065
    [3]Zhang Zhen, Ye Shuran, Yue Jieshun, Wang Yiwei, Huang Chenguang. A COMBINED NEURAL NETWORK AND MULTIPLE MODIFICATION STRATEGY FOR REYNOLDS-AVERAGED NAVIER-STOKES TURBULENCE MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1532-1542. DOI: 10.6052/0459-1879-21-073
    [4]Shui Qingxiang, Wang Daguo. NUMERICAL SIMULATION FOR NAVIER-STOKES EQUATIONS BY PROJECTION/CHARACTERISTIC-BASED OPERATOR-SPLITTING FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 369-381. DOI: 10.6052/0459-1879-13-253
    [5]Bing Chen, Xu Xu, Guobiao Cai. A space-marching algorithm for solving the parabolized Navier-Stokes equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 162-170. DOI: 10.6052/0459-1879-2008-2-2007-440
    [6]Qinglin Duan, Xikui Li. Pressure stabilized fractional step algorithm for incompressible N-S Equations and coupled finite element and meshfree discretization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 749-759. DOI: 10.6052/0459-1879-2007-6-2006-351
    [7]Chong Xie, Jing Fan. Assessment of second-order velocity-slip boundary conditions of the navier-stokes equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-6. DOI: 10.6052/0459-1879-2007-1-2005-577
    [8]SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
    [9]NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS FOR 3-D HYPERSONIC FLOWS IN CHEMICAL NON-EQUILIBRIUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 90-98. DOI: 10.6052/0459-1879-1996-1-1995-306
    [10]THE COMPLETE BOUNDARY INTEGRAL FORMULATION FOR GENERALIZED STOKES EQUATION AND ITS APPLICATION TO THE SOLUTION OF NAVIER-STOKES EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 645-652. DOI: 10.6052/0459-1879-1992-6-1995-787

Catalog

    Article Metrics

    Article views (1697) PDF downloads (755) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return