Citation: | Hong Zheng, Ye Zhengyin. NUMERICAL INVESTIGATION OF THE EVOLUTION OF TWO-DIMENSIONAL T-S WAVES ON AN ANISOTROPIC COMPLIANT WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312. doi: 10.6052/0459-1879-20-460 |
[1] |
张庆, 叶正寅. 基于雨燕翅膀的仿生三角翼气动特性计算研究. 力学学报, 2021,53(2):373-385
(Zhang Qing, Ye Zhengyin. Computational investigations for aerodynamic performance of bio-inspired delta-wing based on swift-wing. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):373-385 (in Chinese))
|
[2] |
教柳, 张保成, 张开升 等. 两关节压力驱动柔性仿生机器鱼的设计与仿生. 力学学报, 2020,52(3):817-827
(Jiao Liu, Zhang Baocheng, Zhang Kaisheng, et al. Design and simulation of two-joint pressure-driven soft bionic fish. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):817-827 (in Chinese))
|
[3] |
冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020,52(1):24-30
(Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):24-30 (in Chinese))
|
[4] |
屈秋林, 王晋军. 鸟类飞行空气动力学对人类飞行的启示. 物理, 2016,45(10):640-644
(Qu Qiulin, Wang Jinjun. Human flight inspired by the aerodynamics of bird flight. Physics, 2016,45(10):640-644 (in Chinese))
|
[5] |
Videler JJ. Avian Flight. Oxford: Oxford University Press, 2006
|
[6] |
Lincoln FC, Peterson SR, Zimmerman JL. Migration of birds. US Department of the interior, US Fish and Wildlife Service, Washington DC Circular 16. Northern Prairie Wildlife Research Center Online, 1998: 61
|
[7] |
Croxall JP, Silk JR, Phillips RA, et al. Global circumnavigations: Tracking year-around ranges of non-breeding Albatrosses. Science, 2005,307:249-250
|
[8] |
Gray J. Studies in animal locomotion: VI. The propulsive powers of the dolphin. Journal of Experimental Biology, 1936,13(2):192-199
|
[9] |
Kramer MO. Boundary-layer stabilization by distributed damping. Journal of the Aerospace Sciences, 1960,27(1):69-69
|
[10] |
Bushnell DM, Hefner JN, Ash RL. Effect of compliant wall motion on turbulent boundary layers. The Physics of Fluids, 1977,20(10):S31-S48
|
[11] |
Carpenter PW, Garrad AD. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. Journal of Fluid Mechanics, 1985,155:465-510
|
[12] |
Carpenter PW, Garrad AD. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. Journal of Fluid Mechanics, 1986,170:199-232
|
[13] |
Lucey AD, Carpenter PW. Boundary layer instability over compliant walls: Comparison between theory and experiment. Physics of Fluids, 1995,7(10):2355-2363
|
[14] |
Lee T, Fisher M, Schwarz WH. Investigation of the effects of a compliant surface on boundary-layer stability. Journal of Fluid Mechanics, 1995,288:37-58
|
[15] |
Davies C, Carpenter PW. Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics, 1997,335:361-392
|
[16] |
Wang Z, Yeo KS, Khoo BC. On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers. European Journal of Mechanics-B/Fluids, 2006,25(1):33-58
|
[17] |
Shu W, Liu W. The effect of compliant coatings on coherent structure in turbulent boundary layers. Acta Mechanica Sinica, 1990,6(2):97-101
|
[18] |
Lee T, Fisher M, Schwarz WH. Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. Journal of Fluid Mechanics, 1993,257:373-401
|
[19] |
Choi KS, Yang X, Clayton BR, et al. Turbulent drag reduction using compliant surfaces. Proceedings of the Royal Society of London. Series A$:$ Mathematical, Physical and Engineering Sciences, 1997,453(1965):2229-2240
|
[20] |
Kulik VM, Lee I, Chun HH. Wave properties of coating for skin friction reduction. Physics of Fluids, 2008,20(7):075109
|
[21] |
Luhar M, Sharma AS, McKeon BJ. A framework for studying the effect of compliant surfaces on wall turbulence. Journal of Fluid Mechanics, 2015,768:415-441
|
[22] |
Endo T, Himeno R. Direct numerical simulation of turbulent flow over a compliant surface. Journal of Turbulence, 2002,3(7):1-10
|
[23] |
Xu S, Rempfer D, Lumley J. Turbulence over a compliant surface: Numerical simulation and analysis. Journal of Fluid Mechanics, 2003,478:11-34
|
[24] |
Kim E, Choi H. Space-time characteristics of a compliant wall in a turbulent channel flow. Journal of fluid mechanics, 2014,756:30-53
|
[25] |
Xia QJ, Huang WX, Xu CX. Direct numerical simulation of turbulent boundary layer over a compliant wall. Journal of Fluids and Structures, 2017,71:126-142
|
[26] |
Fukagata K, Kern S, Chatelain P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent drag reduction. Journal of Turbulence, 2008,9(35):1-17
|
[27] |
Xia QJ, Huang WX, Xu CX. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mechanica Sinica, 2019,35(2):384-400
|
[28] |
Jozsa TI. Analytical solutions of incompressible laminar channel and pipe flows driven by in-plane wall oscillations. Physics of Fluids, 2019,31(8):083605
|
[29] |
Józsa TI, Balaras E, Kashtalyan M, et al. Active and passive in-plane wall fluctuations in turbulent channel flows. Journal of Fluid Mechanics, 2019,866:689-720
|
[30] |
Carpenter PW, Morris PJ. The effect of anisotropic wall compliance on boundary-layer stability and transition. Journal of Fluid Mechanics, 1990,218:171-223
|
[31] |
刘巍, 张理论, 王勇献 等. 计算空气动力学并行编程基础. 北京: 国防工业初版社, 2013
(Liu Wei, Zhang Lilun, Wang Yongxian, et al. Foundations of Computational Aerodynamics Parallel Programming. Beijing: National Defense Industry Press, 2013 (in Chinese))
|
[32] |
廖飞. 高阶精度数值方法及其在复杂流动中的应用. [博士论文]. 西安: 西北工业大学, 2018
(Liao Fei. Efficient high-order high-resolution methods and the applications. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese))
|
[33] |
洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018,50(6):1356-1367
(Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1356-1367 (in Chinese))
|
[34] |
洪正, 叶正寅. 不同亚格子模型在亚声速槽道流大涡模拟中的应用对比. 气体物理, 2019,4(1):33-44
(Hong Zheng, Ye Zhengyin. Application of different subgrid-scale models used in large-eddy simulation of subsonic channel flow. Physics of Gases, 2019,4(1):33-44 (in Chinese))
|
[35] |
叶正寅, 洪正, 武洁. 柔性仿羽毛结构抑制边界层转捩的初步探索. 空气动力学学报, 2020,38(6):1173-1182
(Ye Zhengyin, Hong Zheng, Wu Jie. Suppression of flexible feather-like structure on boundary layer transition. Acta Aerodynamica Sinica, 2020,38(6):1173-1182 (in Chinese))
|
[36] |
Fasel H, Konzelmann U. Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 1990,221:311-347
|