EI、Scopus 收录
中文核心期刊
Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449
Citation: Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449

A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET

  • Received Date: December 23, 2020
  • Due to the inaccurate inertia parameters of the captured tumbling target and the internal wrenches at the grasping points, the motion of the space robot stabilizing the tumbling target cannot be planned and controlled effectively in the post-capture phase. In the existing studies, it is risky to track the desired trajectory planned by inaccurate parameters, which cannot restrain the contact wrenches and guarantee the safety of the grasping points. In order to control the post-capture dual-arm space robot safely, a robust control scheme is proposed for the dual-arm space robot capturing a tumbling target in this paper, where the influences of the inaccurate target inertia parameters and the internal wrenches at the grasping points are considered. First, a robust invariant set is constructed considering the influences of the inaccurate target parameters and internal stress wrenches. Then, to plan a safe desired motion for the dual-arm space robot, a virtual robust control law for the captured target is developed, where the desired trajectory of the target is planned within the constructed invariant sets. By the motion constraints between the space robot and the target, a robust desired trajectory of the dual-arm space robot is obtained. A barrier Lyapunov function based constrained controller is developed to track the robust trajectory efficiently. By tracking the robust trajectory with prescribed control performance, the designed virtual control law is applied to stabilize the captured target. During the stabilization control process, the measured contact wrenches can be restrained by the proposed scheme effectively, which guarantees the safety of the grasping points and the reliability of the stabilization control. The effectiveness of the proposed scheme is validated via the digital simulations, where a non-cooperative tumbling target is stabilized by a dual-arm space robot.
  • [1]
    Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014,68(8):1-26
    [2]
    Hambuchen KA, Roman MC, Sivak A, et al. NASA's space robotics challenge: advancing robotics for future exploration missions//AIAA SPACE and Astronautics Forum and Exposition, 2017: 5120
    [3]
    Gallagher WJ, Solberg K, Gefke GG, et al. A survey of enabling technologies for in-space assembly and servicing//2018 AIAA SPACE and Astronautics Forum and Exposition, 2018: 5116
    [4]
    Aghili F. Optimal trajectories and robot control for detumbling a non-cooperative satellite. Journal of Guidance, Control, and Dynamics, 2020,43(5):981-988
    [5]
    Dimitrov DN, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), IEEE, 2004,4:3345-3350
    [6]
    戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的Legendre 伪谱法. 力学学报, 2016,48(4):823-831

    (Ge Xinsheng, Chen Kaijie. Path planning of free floating space robot using legendre pseudospectral method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):823-831 (in Chinese))
    [7]
    Zong L, Emami MR, Luo J. Reactionless control of free-floating space manipulators. IEEE Transactions on Aerospace and Electronic Systems, 2020,56(2):1490-1503
    [8]
    Oki T, Nakanishi H, Yoshida K. Whole-body motion control for capturing a tumbling target by a free-floating space robot//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007: 2256-2261
    [9]
    王明明, 罗建军, 余敏 等. 冗余空间机械臂抓捕自旋卫星后的消旋控制. 宇航学报, 2018,39(5):84-95

    (Wang Mingming, Luo Jianjun, Yu Min, et al. Detumbling control for kinematic redundant space manipulator post-grasping a rotational satellite. Journal of Astronautica, 2018,39(5):84-95 (in Chinese))
    [10]
    Misra G, Bai X. Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization. Journal of Guidance, Control, and Dynamics, 2017,40(11):2857-2870
    [11]
    宗立军, 罗建军, 王明明 等. 自由漂浮空间机器人多约束混合整数预测控制. 宇航学报, 2016,37(8):992-1000

    (Zong Lijun, Luo Jianjun, Wang Mingming, et al. A mixed integer predictive controller with multi-constraint for free-floating space robots. Journal of Astronautica, 2016,37(8):992-1000 (in Chinese))
    [12]
    余敏, 罗建军, 王明明 等. 一种改进RRT*结合四次样条的协调路径规划方法. 力学学报, 2020,52(4):1024-1034

    (Yu Min, Luo Jianjun, Wang Mingming, et al. Coordinated path planning by integrating improved RRT* and quartic spline. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1024-1034 (in Chinese))
    [13]
    Wu YH, Yu ZC, Li CY, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot. Aerospace Science and Technology, 2020,98:105657
    [14]
    Yan L, Xu W, Hu Z, et al. Multi-objective configuration optimization for coordinated capture of dual-arm space robot. Acta Astronautica, 2020,167:189-200
    [15]
    张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究. 航空学报, 2012,33(12):2347-2354

    (Zhang Fuhai, Fu Yili, Wang Shuguo. Adaptive control of free-floating space robot with inertia parameter uncertainties. Acta Aeronauticaet Astronautica Sinica, 2012,33(12):2347-2354 (in Chinese))
    [16]
    Kernot J, Ulrich S. Adaptive control of a tendon-driven manipulator for the capture of non-cooperative space targets//AIAA Scitech 2020 Forum, 2020: 2080
    [17]
    Jayakody HS, Shi L, Katupitiya J, et al. Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator. Journal of Guidance, Control, and Dynamics, 2016,39(12):2699-2711
    [18]
    Han D, Huang P, Liu X, et al. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot. Acta Astronautica, 2020,176:24-32
    [19]
    程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016,48(4):832-842

    (Cheng Jing, Chen Li. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):832-842 (in Chinese))
    [20]
    Hogan N. Impedance control: An approach to manipulation//1984 American Control Conference, IEEE, 1984: 304-313
    [21]
    Caccavale F, Natale C, Siciliano B, et al. Six-dof impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation, 1999,15(2):289-300
    [22]
    Caccavale F, Chiacchio P, Marino A, et al. Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 2008,13(5):576-586
    [23]
    Abiko S, Lampariello R, Hirzinger G. Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 1020-1025
    [24]
    朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169

    (Zhu An, Chen Li. Mechanical simulation and full ordered sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [25]
    Yoshida K, Nakanishi H. Impedance matching in capturing a satellite by a space robot//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), IEEE, 2003,4:3059-3064
    [26]
    Rastegari R, Moosavian SAA. Multiple impedance control of space free-flying robots via virtual linkages. Acta Astronautica, 2010,66(5-6):748-759
    [27]
    Nakanishi H, Yoshida K. Impedance control for free-flying space robots-basic equations and applications//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 3137-3142
    [28]
    Stolfi A, Gasbarri P, Sabatini M. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronautica, 2017,139:243-253
    [29]
    Uyama N, Narumi T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite. IFAC-PapersOnLine, 2016,49(17):230-235
    [30]
    Xia P, Luo J, Wang M, et al. Constrained compliant control for space robot postcapturing uncertain target. Journal of Aerospace Engineering, 2019,32(1):04018117
    [31]
    Gangapersaud RA, Liu G, de Ruiter AHJ. Robust coordination control of a space manipulator to detumble a non-cooperative target. Acta Astronautica, 2020,179:266-279
    [32]
    Gangapersaud RA, Liu G, de Ruiter AHJ. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot. Advances in Space Research, 2019,63(12):3900-3915
    [33]
    Rawlings JB, Mayne QM, et al. Model Predictive Control: Theory and Design. Madison, WI: Nob Hill Pub, 2009
    [34]
    Tee KP, Ge SS, Tay EH. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009,45(4):918-927
  • Related Articles

    [1]Zhu An, Chen Li. ACTIVE DOCKING OPERATION OF DUAL-ARM SPACE ROBOT CAPTURE SATELLITE FORCE/POSTURE IMPEDANCE CONTROL BASED ON FINITE TIME CONVERGENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2861-2873. DOI: 10.6052/0459-1879-22-224
    [2]Xu Ruonan, Luo Jianjun, Wang Mingming. OPTIMAL GRASPING STRATEGY OF SPACE TUMBLING TARGET BASED ON MANIPULABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2841-2852. DOI: 10.6052/0459-1879-21-436
    [3]Zhu An, Chen Li. MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169. DOI: 10.6052/0459-1879-18-407
    [4]Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. DOI: 10.6052/0459-1879-16-156
    [5]Song Jianzhu, Li Hongnan. ROBUST MARKET-BASED CONTROL METHOD FOR LINEAR STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 430-436. DOI: 10.6052/0459-1879-15-334
    [6]Xie Limin, Chen Li. ROBUST CONTROL AND VIBRATION SUPPRESSION OF FREE-FLOATING FLEXIBLE SPACE ROBOT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1057-1065. DOI: 10.6052/0459-1879-12-156
    [7]Huang Yong Li Shenghong Liu Xianbin. On the moment lyapunov exponent of a viscoelastic plate subjected to the excitation of wide band noises[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 551-560. DOI: 10.6052/0459-1879-2011-3-lxxb2009-776
    [8]Jianhua Liu, Xianbi Liu. The maximal lyapunov exponent for a three-dimensional stochastic system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 521-528. DOI: 10.6052/0459-1879-2010-3-2008-745
    [9]Hao Zhu, Keming Cheng. The lyapunov exponent of vortex dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 789-793. DOI: 10.6052/0459-1879-2009-5-2008-469
    [10]A method for calculating the spectrum of lyapunov exponents of non-smooth dynamical systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 40-47. DOI: 10.6052/0459-1879-2005-1-2004-134

Catalog

    Article Metrics

    Article views (966) PDF downloads (124) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return