Citation: | Wei Zhilong, Jiang Qin. NUMERICAL STUDY ON WATER-AIR TWO-PHASE FLOW BASED ON WENO-THINC/WLIC MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985. doi: 10.6052/0459-1879-20-430 |
[1] |
Almgren AS, Bell JB, Rendleman CA, et al. Low Mach number modeling of type Ia supernovae. I. Hydrodynamics. The Astrophysical Journal, 2006,637(2):922-936
|
[2] |
Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994,115(1):200-212
|
[3] |
Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987,71(2):231-303
|
[4] |
童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017,49(1):93-104
(Tong Fulin, Li Xinliang, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):93-104 (in Chinese))
|
[5] |
童福林, 李欣, 于长平 等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018,50(2):197-208
(Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):197-208 (in Chinese))
|
[6] |
洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018,50(6):1356-1367
(Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1356-1367 (in Chinese))
|
[7] |
Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1988,77(2):439-471
|
[8] |
Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981,39(1):201-225
|
[9] |
张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(5):1050-1058
(Zhang Yang, Chen Ke, You Yunxiang, et al. Confinement effect on the rising dynamics of a skirted bubble. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1050-1058 (in Chinese))
|
[10] |
詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式. 力学学报, 2019,51(6):1712-1719
(Zhan Jiemin, Li Yihua. A hybrid turbulence model for wave breaking simulation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1712-1719 (in Chinese))
|
[11] |
邓斌, 王孟飞, 黄宗伟 等. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报, 2020,52(2):408-419
(Deng Bin, Wang Mengfei, Huang Zongwei, et al. Numerical simulation of the hydrodynamic characteristics of violent aerated flows near vertical structure under wave action. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):408-419 (in Chinese))
|
[12] |
Zhao HY, Ming PJ, Zhang WP, et al. A direct time-integral THINC scheme for sharp interfaces. Journal of Computational Physics, 2019,393:139-161
|
[13] |
Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function. International Journal for Numerical Methods in Fluids, 2005,48(9):1023-1040
|
[14] |
Yokoi K. Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. Journal of Computational Physics, 2007,226(2):1985-2002
|
[15] |
Ii S, Sugiyama K, Takeuchi S, et al. An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction. Journal of Computational Physics, 2012,231(5):2328-2358
|
[16] |
Xie B, Ii S, Xiao F. An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation. International Journal for Numerical Methods in Fluids, 2014,76(12):1025-1042
|
[17] |
Xie B, Xiao F. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature. Journal of Computational Physics, 2017,349:415-440
|
[18] |
Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968,22(104):745-745
|
[19] |
Jiang GS, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 2000,21(6):2126-2143
|
[20] |
Xiao F, Ii S, Chen C. Revisit to the thinc scheme: a simple algebraic vof algorithm. Journal of Computational Physics, 2011,230(19):7086-7092
|
[21] |
Zalesak ST. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 1979,31(3):335-362
|
[22] |
Rider WJ, Kothe DB. Reconstructing volume tracking. Journal of Computational Physics, 1998,141(2):112-152
|
[23] |
Li Z, Oger G, Touzé D L. A finite volume weno scheme for immiscible inviscid two-phase flows. Journal of Computational Physics, 2020,418:109601
|
[24] |
Grenier N, Vila JP, Villedieu P. An accurate low-mach scheme for a compressible two-fluid model applied to free-surface flows. Journal of Computational Physics, 2013,252:1-19
|
[25] |
Lobovsky L, Botia-Vera E, Castellana F, et al. Experimental investigation of dynamic pressure loads during dam break. Journal of Fluids and Structures, 2014,48:407-434
|
[26] |
Martin JC, Moyce WJ. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A Mathematical and Physical Sciences, 1952,244(882):312-324
|
[27] |
Dressler RF. Comparison of theories and experiments for the hydraulic dam-break wave. Int. Assoc. Sci. Hydrology, 1954,3(38):319-328
|
[28] |
Peltonen P, Kanninen P, Laurila E, et al. The ghost fluid method for openfoam: A comparative study in marine context. Ocean Engineering, 2020,216:108007
|
[29] |
Nguyen VT, Park WG. A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows. Computers & Fluids, 2017,152:104-119
|
[30] |
Sun Z, Djidjeli K, Xing JT, et al. Modified mps method for the 2d fluid structure interaction problem with free surface. Computers & Fluids, 2015,122:47-65
|
[31] |
Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005,207(2):542-567
|
[32] |
Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008,227(6):3191-3211
|
[33] |
Fan P, Shen YQ, Tian BL, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014,269:329-354
|
[34] |
骆信, 吴颂平. 改进的五阶WENO-Z+格式. 力学学报, 2019,51(6):1927-1939
(Luo Xin, Wu Songping. An improved fifth-order WENO-Z+ scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1927-1939 (in Chinese))
|
[35] |
Baeza A, Burger R, Mulet P, et al. On the efficient computation of smoothness indicators for a class of WENO reconstructions. Journal of Scientific Computing, 2019,80:1240-1263
|
[36] |
Bhise AA, Gande NR, Samala R, et al. An efficient hybrid WENO scheme with a problem independent discontinuity locator. International Journal for Numerical Methods in Fluids, 2019,91:1-28
|