Citation: | Yao Muwei, Fu Qingfei, Yang Lijun. Stability analysis of viscoelastic liquid droplets excited by radial oscillations. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2468-2476 doi: 10.6052/0459-1879-20-416 |
[1] |
Hoath SD, Hsiao WK, Martin GD, et al. Oscillations of aqueous PEDOT: PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing. Journal of Non-Newtonian Fluid Mechanics, 2015, 223: 28-36 doi: 10.1016/j.jnnfm.2015.05.006
|
[2] |
Wijshoff H. Drop dynamics in the inkjet printing process. Current Opinion in Colloid & Interface Science, 2018, 36: 20-27
|
[3] |
Shen CL, Xie WJ, Wei B. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Physical Review E, 2010, 81: 046305 doi: 10.1103/PhysRevE.81.046305
|
[4] |
鄢振麟, 解文军, 沈昌乐等. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 414-420 (Yan Zhenlin, Xie Wenjun, Shen Changle, et al. Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Physica Sinica, 2011, 60(6): 414-420 (in Chinese)
|
[5] |
Andrade MAB, Marzo A. Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator. Physics of Fluids, 2019, 31: 117101 doi: 10.1063/1.5121728
|
[6] |
张泽辉, 刘康祺, 邸文丽等. 基于超声悬浮的液滴非接触操控及其动力学. 中国科学:物理学 力学 天文学, 2020, 50(10): 113-144 (Zhang Zehui, Liu Kangqi, Di Wenli, et al. Non-contavt droplet manipulation and its dynamics based on acoustic levitation. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(10): 113-144 (in Chinese)
|
[7] |
Tian Y, Holt RG, Apfel RE. A new method for measuring liquid surface tension with acoustic levitation. Review of Scientific Instruments, 1995, 66(5): 3349-3354 doi: 10.1063/1.1145506
|
[8] |
Mcdaniel JG, Holt RG. Measurement of aqueous foam rheology by acoustic levitation. Physical Review E, 2000, 61(3): R2204-R2207 doi: 10.1103/PhysRevE.61.R2204
|
[9] |
Yang L, Kazmierski BK, Hoath SD, et al. Determination of dynamic surface tension and viscosity of non-Newtonian fluids from drop oscillations. Physics of Fluids, 2014, 26(11): 71-97
|
[10] |
Kremer J, Kilzer A, Petermann M. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets. Review of Scientific Instruments, 2018, 89(1): 015109 doi: 10.1063/1.4998796
|
[11] |
Lalanne B, Masbernat O. Determination of interfacial concentration of a contaminated droplet from shape oscillation damping. Physical Review Letters, 2020, 124(19): 194501 doi: 10.1103/PhysRevLett.124.194501
|
[12] |
Rayleigh L. On the capillary phenomena of jets. Proceedings of the Royal Society of London. Series A, 1879, 29(71): 71-97
|
[13] |
Kelvin L. Mathematical and Physical Papers. London: Clay, 1890
|
[14] |
Reid WH. The oscillations of a viscous liquid drop. Quarterly of Applied Mathematics, 1960, 18(86): 86-89
|
[15] |
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Dover, 1961
|
[16] |
Miller CA, Scriven LE. The oscillations of a fluid droplet immersed in another fluid. Journal of Fluid Mechanics, 1968, 32(2): 417-435
|
[17] |
Bauer HF. Surface and interface oscillations in an immiscible spherical visco-elastic system. Acta Mechanica, 1985, 55: 127-149
|
[18] |
Bauer HF, Eidel W. Vibrations of a visco-elastic spherical immiscible liquid system. Zeitschrift fur Angewandte Mathematik und Mechanik, 1987, 67(11): 525-535
|
[19] |
Khismatullin DB, Nadim A. Shape oscillations of a viscoelastic drop. Physical Review E, 2001, 63: 061508 doi: 10.1103/PhysRevE.63.061508
|
[20] |
Lu HL, Apfel RE. Shape oscillations of drops in the presence of surfactants. Journal of Fluid Mechanics, 1991, 222: 351-368
|
[21] |
Tian Y, Holt RG, Apfel RE. Investigations of liquid surface rheology of surfactant solutions by droplet shape oscillations: Theory. Physics of Fluids, 1995, 7(12): 2938-2949 doi: 10.1063/1.868671
|
[22] |
Shi T, Apfel RE. Instability of a deformed liquid drop in an acoustic field. Physics of Fluids, 1995, 7(11): 2601 doi: 10.1063/1.868708
|
[23] |
Tian Y, Holt RG, Apfel RE. Investigation of liquid surface rheology of surfactant solutions by droplet shape oscillations: experiments. Journal of Colloid and Interface Science, 1997, 187(1): 1-10 doi: 10.1006/jcis.1996.4698
|
[24] |
Apfel RE, Tian Y, Jankovsky J, et al. Free oscillations and surfactant studies of superdeformed drops in microgravity. Physical Review Letters, 1997, 78(10): 1912-1915 doi: 10.1103/PhysRevLett.78.1912
|
[25] |
Li YK, Zhang P, Kang N. Theoretical analysis of Rayleigh-Taylor instability on a spherical droplet in a gas stream. Applied Mathematical Modelling, 2019, 67: 634-644 doi: 10.1016/j.apm.2018.11.046
|
[26] |
吴清, 黎一锴, 康宁等. 动态惯性力作用下球形油滴二次破碎分析. 内燃机学报, 2019, 37(6): 561-568 (Wu Qing, Li Yikai, Kang Ning, et al. Secondary breakup analysis of spherical oil droplets under time-dependent inertial force. Transactions of CSICE, 2019, 37(6): 561-568 (in Chinese)
|
[27] |
Ebo Adou AH, Tuckerman LS. Faraday instability on a sphere: Floquet analysis. Journal of Fluid Mechanics, 2016, 805: 591-610 doi: 10.1017/jfm.2016.542
|
[28] |
Ebo Adou AH, Tuckerman LS, Shin S, et al. Faraday instability on a sphere: numerical simulation. Journal of Fluid Mechanics, 2019, 870: 433-459 doi: 10.1017/jfm.2019.252
|
[29] |
Kumar K, Tuckerman LS. Parametric instability of the interface between two fluids. Journal of Fluid Mechanics, 1994, 279: 49-68 doi: 10.1017/S0022112094003812
|
[30] |
Li YK, Zhang P, Kang N. Linear analysis on the interfacial instability of a spherical liquid droplet subject to a radial vibration. Physics of Fluids, 2018, 30: 102104 doi: 10.1063/1.5050517
|
[31] |
Liu F, Kang N, Li Y. Experimental investigation on the atomization of a spherical droplet induced by Faraday instability. Experimental Thermal and Fluid Science, 2019, 100: 311-318 doi: 10.1016/j.expthermflusci.2018.09.016
|
[32] |
Brenn G, Teichtmeister S. Linear shape oscillations and polymeric time scales of viscoelastic drops. Journal of Fluid Mechanics, 2013, 733: 504-527 doi: 10.1017/jfm.2013.452
|
[33] |
Li F, Yin XY, Yin, XZ. Shape oscillations of a viscoelastic droplet suspended in a viscoelastic host liquid. Physical Review E, 2020, 5: 033610
|
[34] |
Liu Z, Brenn G, Durst F. Linear analysis of the instability of two-dimensional non-Newtonian liquid sheets. Journal of Non-Newtonian Fluid Mechanics, 1998, 78: 133-166 doi: 10.1016/S0377-0257(98)00060-3
|