Citation: | Zhan Jiuyu, Zhou Xinhua, Huang Rui. PARAMETRIC AEROELASTIC MODELING OF FOLDING WING BASED ON MANIFOLD TANGENT SPACE INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113. DOI: 10.6052/0459-1879-20-376 |
[1] |
武宇飞, 龙腾, 毛能峰. 跨介质变体飞行器设计优化技术进展. 战术导弹技术, 2020,41(4):29-40
(Wu Yufei, Long Teng, Mao Nengfeng. Review of trans-media morphing flight vehicle design optimization techniques. Tactical Missile Technology, 2020,41(4):29-40 (in Chinese))
|
[2] |
叶友达, 张涵信, 蒋勤学 等. 近空间高超声速飞行器气动特性研究的若干关键问题. 力学学报, 2018,50(6):1292-1310
(Ye Youda, Zhang Hanxin, Jiang Qinxue, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1292-1310 (in Chinese))
|
[3] |
冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术. 空军工程大学学报(自然科学版), 2019,20(3):8-13
(Feng Jinfu, Hu Junhua, Qi Du. Study on development needs and key technologies of air-water trans-media vehicle. Journal of Air Force Engineering University (Natural Science Edition), 2019,20(3):8-13 (in Chinese))
|
[4] |
Barbarino S, Bilgen O, Ajaj RM, et al. A review of morphing aircraft. Journal of Intelligent Material Systems & Structures, 2011,22(9):823-877
|
[5] |
廖波, 袁昌盛, 李永泽. 折叠机翼无人机的发展现状和关键技术研究. 机械设计, 2012,29(4):5-9
(Liao Bo, Yuan Changsheng, Li Yongze. Development status and key technologies of folding-wing unmanned air vehicle. Journal of Machine Design, 2012,29(4):5-9 (in Chinese))
|
[6] |
杨博, 窦婧文, 曹振. 变体飞行器的气动结构对控制系统的影响. 弹道学报, 2020,32(1):83-90, 96
(Yang Bo, Dou JingWen, Cao Zheng. Influence of aerodynamic structure of morphing aircraft on the control system. Journal of Ballistics, 2020,32(1):83-90, 96 (in Chinese))
|
[7] |
Yue T, Wang L, Ai J. Longitudinal linear parameter varying modeling and simulation of morphing aircraft. Journal of Aircraft, 2013,50(6):1673-1681
|
[8] |
郭建国, 陈惠娟, 周军 等. 非对称伸缩翼飞行器动力学建模及特性分析. 系统工程与电子技术, 2016,38(8):1951-1957
(Guo Jianguo, Chen Huijuan, Zhou Jun, et al. Dynamic modeling and characteristic analysis of asymmetric span morphing wing. Systems Engineering and Electronics, 2016,38(8):1951-1957 (in Chinese))
|
[9] |
罗操群, 孙加亮, 文浩 等. 多刚体系统分离策略及释放动力学研究. 力学学报, 2020,52(2):503-513
(Luo Caoqun, Sun Jialiang, Wen Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):503-513 (in Chinese))
|
[10] |
Shi RQ, Song JM. Dynamics and control for an in-plane morphing wing. Aircraft Engineering & Aerospace Technology, 2013,85(1):24-31
|
[11] |
宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制. 力学学报, 2020,52(6):1548-1559
(Song HuiXin, Jin Lei. Dynamic modeling and stability control of folding wing aircraft. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1548-1559 (in Chinese))
|
[12] |
Obradovic B, Subbarao K. Modeling of flight dynamics of morphing wing aircraft. Journal of Aircraft, 2011,48(2):391-402
|
[13] |
张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析. 北京航空航天大学学报, 2015,41(1):58-64
(Zhang Jie, Wu Sentang. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(1):58-64 (in Chinese))
|
[14] |
Hu W, Yang ZC, Gu YS. Aeroelastic study for folding wing during the morphing process. Journal of Sound and Vibration, 2016,365:216-229
|
[15] |
李海泉, 梁建勋, 吴爽 等. 空间机械臂柔性捕获机构建模与实验研究. 力学学报, 2020,52(5):1465-1474
(Li Haiquan, Liang Jianxun, Wu Shuang, et al. Dynamics modeling and experiment of a flexible capturing mechanism in a space manipulator. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1465-1474 (in Chinese))
|
[16] |
郭祥, 靳艳飞, 田强. 随机空间柔性多体系统动力学分析. 力学学报, 2020,52(6):1730-1742
(Guo Xiang, Jin Yanfei, Tian Qiang. Dynamics analysis of stochastic spatial flexible multibody system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1730-1742 (in Chinese))
|
[17] |
Snyder MP, Sanders B, Eastep FE, et al. Vibration and flutter characteristics of a folding wing. Journal of Aircraft, 2009,46(3):791-799
|
[18] |
Selitrennik E, Karpel M, Levy Y. Computational aeroelastic simulation of rapidly morphing air vehicles. Journal of Aircraft, 2013,49(6):1675-1686
|
[19] |
Lee DH, Chen PC. Nonlinear aeroelastic studies on a folding wing configuration with free-play hinge nonlinearity//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006
|
[20] |
Zhao YH, Hu HY. Parameterized aeroelastic modeling and flutter analysis for a folding wing. Journal of Sound & Vibration, 2012,331(2):308-324
|
[21] |
倪迎鸽, 侯赤, 万小朋 等. 折叠机翼的参数化气动弹性建模与颤振分析. 西北工业大学学报, 2015,33(5):788-793
(Ni Yingge, Hou Chi, Wan Xiaopeng, et al. Parametric aeroelastic modeling and flutter analysis for a folding wing. Journal of Northwest Polytechnical University, 2015,33(5):788-793 (in Chinese))
|
[22] |
Huang R, Yang ZJ, Yao XJ, et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing. AIAA Journal, 2019,57:4599-4607
|
[23] |
吴莉洁, 宋汉文. 基于子结构综合法的周期支撑结构带隙分析. 噪声与振动控制, 2018,38(5):40-44, 51
(Wu Lijie, Song Hanwen. Band gap analysis for periodically supported structures based on substructure synthesis method. Noise and Vibration Control, 2018,38(5):40-44, 51 (in Chinese))
|
[24] |
王永岩. 动态子结构方法理论及应用. 北京: 科学出版社, 1999
(Wang Yongyan. Theory and Application of Dynamic Substructure Method. Beijing: Science Press, 1999 (in Chinese))
|
[25] |
Amsallem D, Farhat C, Lieu T. Aeroelastic analysis of F-16 and F-18/A configurations using adapted CFD-based reduced-order models//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013
|
[26] |
Amsallem D, Farhat C, Lieu T. High-order interpolation of reduced-order models for near real-time aeroelastic prediction//International Forum on Aeroelasticity and Structural Dynamics, 2007
|
[27] |
Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal, 2008,46(7):1803-1813
|
[28] |
Farhat C, Amsallem D. Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008
|
[29] |
Amsallem D, Cortial J, Carlberg K, et al. A method for interpolating on manifolds structural dynamics reduced-order models. International Journal for Numerical Methods in Engineering, 2009,80(9):1241-1258
|
[30] |
刘营, 李鸿光, 李韵 等. 一种加速的参数化模型降阶方法. 航空动力学报, 2019,34(10):2264-2270
(Liu Ying, Li Hongguang, Li Yun, et al. Accelerated parametric model order reduction method. Journal of Aerospace Power, 2019,34(10):2264-2270 (in Chinese))
|
[31] |
Amsallem D, Farhat C. Stabilization of projection-based reduced-order models. International Journal for Numerical Methods in Engineering, 2012,91(4):358-377
|
[32] |
刘营, 李鸿光, 李韵 等. 基于子结构的参数化模型降阶方法. 振动与冲击, 2020,39(16):148-154
(Liu Ying, Li Hongguang, Li Yun, et al. A component-based parametric model order reduction method. Journal of Vibration and Shock, 2020,39(16):148-154 (in Chinese))
|
[1] | Wan Yunyi, Huang Rui, Liu Haojie. TRANSONIC FLUTTER ANALYSIS OF A MORPHING WING VIA DATA DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 523-534. DOI: 10.6052/0459-1879-24-475 |
[2] | Zhang Liqi, Yue Chengyu, Zhao Yonghui. PARAMETER-VARYING AEROELASTIC MODELING AND ANALYSIS FOR A VARIABLE-SWEEP WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3134-3146. DOI: 10.6052/0459-1879-21-275 |
[3] | Song Huixin, Jin Lei. DYNAMIC MODELING AND STABILITY CONTROL OF FOLDING WING AIRCRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559. DOI: 10.6052/0459-1879-20-115 |
[4] | Zhang Jiaming, Yang Zhijun, Huang Rui. REDUCED-ORDER MODELING FOR AEROELASTIC SYSTEMS VIA NONLINEAR STATE-SPACE IDENTIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 150-161. DOI: 10.6052/0459-1879-19-287 |
[5] | Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. DOI: 10.6052/0459-1879-16-358 |
[6] | Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361 |
[7] | Hu Haiyan, Zhao Yonghui, Huang Rui. STUDIES ON AEROELASTIC ANALYSIS AND CONTROL OF AIRCRAFT STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27. DOI: 10.6052/0459-1879-15-423 |
[8] | Dawei Chen, Guowei Yang. Static aeroelastic analysis of a flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 469-479. DOI: 10.6052/0459-1879-2009-4-2008-042 |
[9] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
1. |
陈树生,贾苜梁,刘衍旭,高正红,向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展. 航空学报. 2024(06): 7-53+2 .
![]() | |
2. |
叶博,杨佑绪,卢嘉成,余灵富,成志勇. 带扩口折叠翼尖的大展弦比机翼气动弹性研究. 西北工业大学学报. 2024(02): 241-250 .
![]() | |
3. |
杨执钧,张忠,高博,郭静,魏龙. 不同折叠角下含间隙折叠机翼极限环振荡分析. 强度与环境. 2024(03): 37-45 .
![]() | |
4. |
喻世杰,周兴华,黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析. 航空学报. 2023(08): 125-137 .
![]() | |
5. |
徐斌锋. 一种双关节折叠无人机设计与研究. 云南民族大学学报(自然科学版). 2022(05): 608-612 .
![]() | |
6. |
田素梅,张应鹏,张贺铭,祁武超. 大展弦比等剖面多段折叠翼颤振特性. 兵工学报. 2022(12): 3200-3210 .
![]() | |
7. |
张立启,岳承宇,赵永辉. 变后掠翼的参变气动弹性建模与分析. 力学学报. 2021(11): 3134-3146 .
![]() |