Processing math: 100%
EI、Scopus 收录
中文核心期刊
Zhan Jiuyu, Zhou Xinhua, Huang Rui. PARAMETRIC AEROELASTIC MODELING OF FOLDING WING BASED ON MANIFOLD TANGENT SPACE INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113. DOI: 10.6052/0459-1879-20-376
Citation: Zhan Jiuyu, Zhou Xinhua, Huang Rui. PARAMETRIC AEROELASTIC MODELING OF FOLDING WING BASED ON MANIFOLD TANGENT SPACE INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113. DOI: 10.6052/0459-1879-20-376

PARAMETRIC AEROELASTIC MODELING OF FOLDING WING BASED ON MANIFOLD TANGENT SPACE INTERPOLATION

  • Received Date: October 27, 2020
  • The parametric aeroelastic modeling of a morphing aircraft is a hot topic in the research field of morphing aircraft design. However, the traditional non-parametric aeroelastic dynamic modeling methods have some problems, such as low modeling efficiency and complex aeroelastic analysis for for aeroelastic research of morphing aircraft with structural parametric characteristics. In this paper, a parametric aeroelastic modeling method of folding wing based on the tangent space interpolation is proposed. Firstly, based on the structural finite element models of a folding wing at several folding angles, a parametric structural dynamic model of the folding wing is established by tangent space interpolation. Then, the parametric unsteady aerodynamics is computed by the Doublet Lattice method. At last, the parametric aeroelastic model of the folding wing is obtained by coupling the structural dynamics and unsteady aerodynamics. To verify the accuracy of the parameterized model in the aeroelastic calculation, a small aspect ratio folding wing is taken as the research object. The dynamic characteristics including the natural frequencies, mode shapes, and flutter boundaries at different folding angles are efficiently calculated. In addition, the numerical results computed via the present parametric method are compared with the direct non-parametric method. The demonstration shows that the results from the parametric aeroelastic model is consistent with the direct method for the aeroelastic problems and has the advantage of higher calculation efficiency.
  • [1]
    武宇飞, 龙腾, 毛能峰. 跨介质变体飞行器设计优化技术进展. 战术导弹技术, 2020,41(4):29-40

    (Wu Yufei, Long Teng, Mao Nengfeng. Review of trans-media morphing flight vehicle design optimization techniques. Tactical Missile Technology, 2020,41(4):29-40 (in Chinese))
    [2]
    叶友达, 张涵信, 蒋勤学 等. 近空间高超声速飞行器气动特性研究的若干关键问题. 力学学报, 2018,50(6):1292-1310

    (Ye Youda, Zhang Hanxin, Jiang Qinxue, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1292-1310 (in Chinese))
    [3]
    冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术. 空军工程大学学报(自然科学版), 2019,20(3):8-13

    (Feng Jinfu, Hu Junhua, Qi Du. Study on development needs and key technologies of air-water trans-media vehicle. Journal of Air Force Engineering University (Natural Science Edition), 2019,20(3):8-13 (in Chinese))
    [4]
    Barbarino S, Bilgen O, Ajaj RM, et al. A review of morphing aircraft. Journal of Intelligent Material Systems & Structures, 2011,22(9):823-877
    [5]
    廖波, 袁昌盛, 李永泽. 折叠机翼无人机的发展现状和关键技术研究. 机械设计, 2012,29(4):5-9

    (Liao Bo, Yuan Changsheng, Li Yongze. Development status and key technologies of folding-wing unmanned air vehicle. Journal of Machine Design, 2012,29(4):5-9 (in Chinese))
    [6]
    杨博, 窦婧文, 曹振. 变体飞行器的气动结构对控制系统的影响. 弹道学报, 2020,32(1):83-90, 96

    (Yang Bo, Dou JingWen, Cao Zheng. Influence of aerodynamic structure of morphing aircraft on the control system. Journal of Ballistics, 2020,32(1):83-90, 96 (in Chinese))
    [7]
    Yue T, Wang L, Ai J. Longitudinal linear parameter varying modeling and simulation of morphing aircraft. Journal of Aircraft, 2013,50(6):1673-1681
    [8]
    郭建国, 陈惠娟, 周军 等. 非对称伸缩翼飞行器动力学建模及特性分析. 系统工程与电子技术, 2016,38(8):1951-1957

    (Guo Jianguo, Chen Huijuan, Zhou Jun, et al. Dynamic modeling and characteristic analysis of asymmetric span morphing wing. Systems Engineering and Electronics, 2016,38(8):1951-1957 (in Chinese))
    [9]
    罗操群, 孙加亮, 文浩 等. 多刚体系统分离策略及释放动力学研究. 力学学报, 2020,52(2):503-513

    (Luo Caoqun, Sun Jialiang, Wen Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):503-513 (in Chinese))
    [10]
    Shi RQ, Song JM. Dynamics and control for an in-plane morphing wing. Aircraft Engineering & Aerospace Technology, 2013,85(1):24-31
    [11]
    宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制. 力学学报, 2020,52(6):1548-1559

    (Song HuiXin, Jin Lei. Dynamic modeling and stability control of folding wing aircraft. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1548-1559 (in Chinese))
    [12]
    Obradovic B, Subbarao K. Modeling of flight dynamics of morphing wing aircraft. Journal of Aircraft, 2011,48(2):391-402
    [13]
    张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析. 北京航空航天大学学报, 2015,41(1):58-64

    (Zhang Jie, Wu Sentang. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(1):58-64 (in Chinese))
    [14]
    Hu W, Yang ZC, Gu YS. Aeroelastic study for folding wing during the morphing process. Journal of Sound and Vibration, 2016,365:216-229
    [15]
    李海泉, 梁建勋, 吴爽 等. 空间机械臂柔性捕获机构建模与实验研究. 力学学报, 2020,52(5):1465-1474

    (Li Haiquan, Liang Jianxun, Wu Shuang, et al. Dynamics modeling and experiment of a flexible capturing mechanism in a space manipulator. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1465-1474 (in Chinese))
    [16]
    郭祥, 靳艳飞, 田强. 随机空间柔性多体系统动力学分析. 力学学报, 2020,52(6):1730-1742

    (Guo Xiang, Jin Yanfei, Tian Qiang. Dynamics analysis of stochastic spatial flexible multibody system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1730-1742 (in Chinese))
    [17]
    Snyder MP, Sanders B, Eastep FE, et al. Vibration and flutter characteristics of a folding wing. Journal of Aircraft, 2009,46(3):791-799
    [18]
    Selitrennik E, Karpel M, Levy Y. Computational aeroelastic simulation of rapidly morphing air vehicles. Journal of Aircraft, 2013,49(6):1675-1686
    [19]
    Lee DH, Chen PC. Nonlinear aeroelastic studies on a folding wing configuration with free-play hinge nonlinearity//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006
    [20]
    Zhao YH, Hu HY. Parameterized aeroelastic modeling and flutter analysis for a folding wing. Journal of Sound & Vibration, 2012,331(2):308-324
    [21]
    倪迎鸽, 侯赤, 万小朋 等. 折叠机翼的参数化气动弹性建模与颤振分析. 西北工业大学学报, 2015,33(5):788-793

    (Ni Yingge, Hou Chi, Wan Xiaopeng, et al. Parametric aeroelastic modeling and flutter analysis for a folding wing. Journal of Northwest Polytechnical University, 2015,33(5):788-793 (in Chinese))
    [22]
    Huang R, Yang ZJ, Yao XJ, et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing. AIAA Journal, 2019,57:4599-4607
    [23]
    吴莉洁, 宋汉文. 基于子结构综合法的周期支撑结构带隙分析. 噪声与振动控制, 2018,38(5):40-44, 51

    (Wu Lijie, Song Hanwen. Band gap analysis for periodically supported structures based on substructure synthesis method. Noise and Vibration Control, 2018,38(5):40-44, 51 (in Chinese))
    [24]
    王永岩. 动态子结构方法理论及应用. 北京: 科学出版社, 1999

    (Wang Yongyan. Theory and Application of Dynamic Substructure Method. Beijing: Science Press, 1999 (in Chinese))
    [25]
    Amsallem D, Farhat C, Lieu T. Aeroelastic analysis of F-16 and F-18/A configurations using adapted CFD-based reduced-order models//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013
    [26]
    Amsallem D, Farhat C, Lieu T. High-order interpolation of reduced-order models for near real-time aeroelastic prediction//International Forum on Aeroelasticity and Structural Dynamics, 2007
    [27]
    Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal, 2008,46(7):1803-1813
    [28]
    Farhat C, Amsallem D. Recent advances in reduced-order modeling and application to nonlinear computational aeroelasticity//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008
    [29]
    Amsallem D, Cortial J, Carlberg K, et al. A method for interpolating on manifolds structural dynamics reduced-order models. International Journal for Numerical Methods in Engineering, 2009,80(9):1241-1258
    [30]
    刘营, 李鸿光, 李韵 等. 一种加速的参数化模型降阶方法. 航空动力学报, 2019,34(10):2264-2270

    (Liu Ying, Li Hongguang, Li Yun, et al. Accelerated parametric model order reduction method. Journal of Aerospace Power, 2019,34(10):2264-2270 (in Chinese))
    [31]
    Amsallem D, Farhat C. Stabilization of projection-based reduced-order models. International Journal for Numerical Methods in Engineering, 2012,91(4):358-377
    [32]
    刘营, 李鸿光, 李韵 等. 基于子结构的参数化模型降阶方法. 振动与冲击, 2020,39(16):148-154

    (Liu Ying, Li Hongguang, Li Yun, et al. A component-based parametric model order reduction method. Journal of Vibration and Shock, 2020,39(16):148-154 (in Chinese))
  • Related Articles

    [1]Wan Yunyi, Huang Rui, Liu Haojie. TRANSONIC FLUTTER ANALYSIS OF A MORPHING WING VIA DATA DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 523-534. DOI: 10.6052/0459-1879-24-475
    [2]Zhang Liqi, Yue Chengyu, Zhao Yonghui. PARAMETER-VARYING AEROELASTIC MODELING AND ANALYSIS FOR A VARIABLE-SWEEP WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3134-3146. DOI: 10.6052/0459-1879-21-275
    [3]Song Huixin, Jin Lei. DYNAMIC MODELING AND STABILITY CONTROL OF FOLDING WING AIRCRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559. DOI: 10.6052/0459-1879-20-115
    [4]Zhang Jiaming, Yang Zhijun, Huang Rui. REDUCED-ORDER MODELING FOR AEROELASTIC SYSTEMS VIA NONLINEAR STATE-SPACE IDENTIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 150-161. DOI: 10.6052/0459-1879-19-287
    [5]Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. DOI: 10.6052/0459-1879-16-358
    [6]Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361
    [7]Hu Haiyan, Zhao Yonghui, Huang Rui. STUDIES ON AEROELASTIC ANALYSIS AND CONTROL OF AIRCRAFT STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27. DOI: 10.6052/0459-1879-15-423
    [8]Dawei Chen, Guowei Yang. Static aeroelastic analysis of a flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 469-479. DOI: 10.6052/0459-1879-2009-4-2008-042
    [9]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(7)

    1. 陈树生,贾苜梁,刘衍旭,高正红,向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展. 航空学报. 2024(06): 7-53+2 .
    2. 叶博,杨佑绪,卢嘉成,余灵富,成志勇. 带扩口折叠翼尖的大展弦比机翼气动弹性研究. 西北工业大学学报. 2024(02): 241-250 .
    3. 杨执钧,张忠,高博,郭静,魏龙. 不同折叠角下含间隙折叠机翼极限环振荡分析. 强度与环境. 2024(03): 37-45 .
    4. 喻世杰,周兴华,黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析. 航空学报. 2023(08): 125-137 .
    5. 徐斌锋. 一种双关节折叠无人机设计与研究. 云南民族大学学报(自然科学版). 2022(05): 608-612 .
    6. 田素梅,张应鹏,张贺铭,祁武超. 大展弦比等剖面多段折叠翼颤振特性. 兵工学报. 2022(12): 3200-3210 .
    7. 张立启,岳承宇,赵永辉. 变后掠翼的参变气动弹性建模与分析. 力学学报. 2021(11): 3134-3146 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1080) PDF downloads (133) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return