Citation: | Li Xiangyu, Qiao Dong, Cheng Yu. PROGRESS OF THREE-BODY ORBITAL DYNAMICS STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1223-1245. doi: 10.6052/0459-1879-20-367 |
[1] |
Valtonen M, Karttunen H. The Three-Body Problem. Cambridge: Cambridge University Press, 2006
|
[2] |
Sundman KF. Mémoire sur le problème des trois corps. Acta Mathematica, 1913,36(1):105-179
|
[3] |
Suvakov M, Dmitrasinovic V. Three classes of newtonian three-body planar periodic orbits. Physical Review Letters, 2013,110(11):114301
|
[4] |
Broucke R. Stability of periodic orbits in the elliptic restricted three-body problem. AIAA Journal, 1969,7(6):1003-1009
|
[5] |
Huang SS. Very restricted four-body problem. The Astronomical Journal, 1960,65:347
|
[6] |
Andreu MA. The quasi-bicircular problem. [PhD Thesis]. Barcelona: University of Barcelona, 1998
|
[7] |
Richardson DL. Analytic construction of periodic orbits about the collinear points. Celestial Mechanics and Dynamical Astronomy, 1980,22(3):241-253
|
[8] |
Howell KC, Pernicka HJ. Numerical determination of Lissajous trajectories in the restricted three-body problem. Celestial Mechanics, 1987,41(1):107-124
|
[9] |
Gómez G, Koon WS, Lo MW, et al. Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity, 2004,17(5):1571-1606
|
[10] |
Belbruno E, Carrico J. Calculation of weak stability boundary ballistic lunar transfer trajectories//AIAA/AAS Astrodynamics Specialist Conference, 2000-8-14-17, USA CO, Denver, AIAA 2000-4142
|
[11] |
García F, Gómez G. A note on weak stability boundaries. Celestial Mechanics and Dynamical Astronomy, 2007,97(2):87-100
|
[12] |
Belbruno E, Gidea M, Topputo F. Weak stability boundary and invariant manifolds. SIAM Journal on Applied Dynamical Systems, 2010,9(3):1061-1089
|
[13] |
Richardson DL. Halo orbit formulation for the ISEE-3 mission. Journal of Guidance, Control, and Dynamics, 1980,3(6):543-548
|
[14] |
Belbruno EA, Miller JK. Sun-perturbed Earth-to-moon transfers with ballistic capture. Journal of Guidance, Control, and Dynamics, 1993,16(4):770-775
|
[15] |
吴伟仁, 王琼, 唐玉华 等. "嫦娥4号"月球背面软着陆任务设计. 深空探测学报, 2017,4(2):111-117
(Wu Weiren, Wang Qiong, Tang Yuhua, et al. Design of Chang'e-4 lunar farside soft-landing mission. Journal of Deep Space Exploration, 2017,4(2):111-117 (in Chinese))
|
[16] |
Brown EW. An Introductory Treatise on the Lunar Theory. NY: Dover Publications Inc., 1896
|
[17] |
Farquhar RW. The control and use of libration-point satellites. NASA Technical Report, NASA TR R-346, 1970
|
[18] |
Nicholson FT. Effect of solar perturbation on motion near the collinear earth-moon libration points. AIAA Journal, 1967,5(12):2237-2241
|
[19] |
刘林, 王歆. 月球探测器轨道力学. 北京: 国防工业出版社, 2006
(Liu Lin, Wang Xin. Beijing: National Defense Industry Press (in Chinese))
|
[20] |
Lewallen JM, Tapley BD. Solar influence on satellite motion near the stable earth-moon libration points. AIAA Journal, 2015,2(4):728-732
|
[21] |
Li XY, Qiao D, Macdonald M. Energy-saving capture at Mars via backward-stable orbits. Journal of Guidance, Control, and Dynamics, 2019,42(5):1-10
|
[22] |
Makó Z, Szenkovits F, Salamon J, et al. Stable and unstable orbits around Mercury. Celestial Mechanics and Dynamical Astronomy, 2010,108(4):357-370
|
[23] |
Ma X, Li JF. Distant quasi-periodic orbits around Mercury. Astrophysics and Space Science, 2013,343(1):83-93
|
[24] |
Campagnola S, Lo M. BepiColombo gravitational capture and the elliptic restricted three-body problem. Proceedings in Applied Mathematics and Mechanics, 2008,7(1):1030905-1030906
|
[25] |
Schechter HB. Three-dimensional nonlinear stability analysis of the Sun-perturbed Earth-moon equilateral points. AIAA Journal, 2008,6(7):1223-1228
|
[26] |
Gómez G, Llibre J, Martínez R, et al. Study on orbits near the triangular libration points in the perturbed restricted three body problem. Final Report Fundacio Empresa i Ciencia, Spain: Barcelona, 1987
|
[27] |
Castelli R. Regions of prevalence in the coupled restricted three-body problems approximation. Communications in Nonlinear Science and Numerical Simulation, 2012,17(2):804-816
|
[28] |
Andreu MA, Simó C. Translunar halo orbits in the quasi-bicircular problem//The Dynamics of Small Bodies in the Solar System. Springer, Dordrecht, 1999: 309-314
|
[29] |
Andreu MA. Dynamics in the center manifold around $L_2$ in the quasi-bicircular problem. Celestial Mechanics and Dynamical Astronomy, 2002,84(2):105-133
|
[30] |
Guzman JJ. Spacecraft trajectory design in the context of a coherent restricted four-body problem. [PhD Thesis]. Lafayette: Perdue University, 2001
|
[31] |
Shang HB, Wu XY, Cui PY. Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions. Astrophysics and Space Science, 2015,355(1):69-87
|
[32] |
Li XY, Qiao D, Barucci MA. Analysis of equilibria in the doubly synchronous binary asteroid systems concerned with non-spherical shape. Astrodynamics, 2018,2(2):133-146
|
[33] |
Li XY, Qiao D, Li P. Bounded trajectory design and self-adaptive maintenance control near non-synchronized binary systems comprised of small irregular bodies. Acta Astronautica, 2018,152:768-781
|
[34] |
Szebehely V. Theory of Orbits: The Restricted Problem of Three Bodies. New York and London: Academic Press, 1967
|
[35] |
Jorba A, Villanueva J. On the persistence of lower dimensional invariant tori under quasiperiodic perturbations. Journal of Nonlinear Science, 1997,7(5):427-473
|
[36] |
Farquhar RW, Kamel AA. Quasi-periodic orbits about the translunar libration point. Celestial Mechanics, 1973,7(4):458-473
|
[37] |
Gómez G, Marcote M. High-order analytical solutions of Hill's equations. Celestial Mechanics and Dynamical Astronomy, 2006,94(2):197-211
|
[38] |
Howell KC. Three-dimensional, periodic, 'halo' orbits. Celestial Mechanics & Dynamical Astronomy, 1984,32(1):53-71
|
[39] |
Folta DC, Woodard M, Howell KC, et al. Applications of multi-body dynamical environments: The ARTEMIS transfer trajectory design. Acta Astronautica, 2012,73:237-249
|
[40] |
Simo C. On the analytical and numerical approximation of invariant manifolds. In Modern Methods in Celestial Mechanics, Eds. D. Benest, C. Froeschlé, Editions Frontières, 1990: 285-329
|
[41] |
Alessi EM. The role and usage of libration point orbits in the Earth — Moon system. [PhD Thesis]. Barcelona: University of Barcelona, 2010
|
[42] |
Colombo G. The stabilization of an artificial satellite at the inferior conjunction point of the Earth-Moon system. Journal of the Astronautical Sciences, 1961,6(1):213
|
[43] |
Breakwell JV, Kamel AA, Ratner MJ. Station-keeping for a translunar communication station. Celestial Mechanics, 1974,10(3):357-373
|
[44] |
Howell KC, Pernicka HJ. Station-keeping method for libration point trajectories. Journal of Guidance, Control, and Dynamics, 1993,16(1):713-723
|
[45] |
Pernicka HJ. The numerical determination of nominal libration point trajectories and development of a station-keeping strategy. [PhD Thesis]. Lafayette: Purdue University, 1990
|
[46] |
Dunham DW, Roberts CE. Stationkeeping techniques for libration point satellites. Journal of the Astronautical Sciences, 2001,49(1):127-144
|
[47] |
Farquhar RW, Muhonen DP, Newman CR, et al. Trajectories and orbital maneuvers for the first libration-point satellite. Journal of Guidance, Control, and Dynamics, 1980,3(6):549-554
|
[48] |
Howell KC, Marchand BG. Control strategies for formation flight in the vicinity of the libration points. Journal of Guidance, Control, and Dynamics, 2005,28(6):1210-1219
|
[49] |
Gómez G, Howell KC, Masdemont J, et al. Station-keeping strategies for translunar libration point orbits. Advances in the Astronautical Sciences, 1998,99(2):949-967
|
[50] |
Pavlak TA, Howell KC. Strategy for long-term libration point orbit stationkeeping in the Earth-Moon system//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2011-7-31-8-4, Girdwood, Alaska, AAS Paper 11-516
|
[51] |
Folta DC, Woodard M, Cosgrove D. Stationkeeping of the first Earth-Moon libration orbiters: The ARTEMIS mission//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2011-07-31—08-04, Girdwood, Alaska, AAS Paper 11-515
|
[52] |
Gómez G, Mondelo JM. The dynamics around the collinear equilibrium points of the RTBP. Physica D Nonlinear Phenomena, 2001,157(4):283-321
|
[53] |
Baresi N, Scheeres DJ. Quasi-periodic invariant tori of time-periodic dynamical systems: Applications to small body exploration// Proceedings of the International Astronautical Congress, 2016-9-26-30, Mexico, Guadalajara
|
[54] |
Kolemen E, Kasdin NJ, Gurfil P. Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celestial Mechanics and Dynamical Astronomy, 2012,112(1):47-74
|
[55] |
Campagnola S, Lo MW, Newton P. Subregions of motion and elliptic Halo orbits in the elliptic restricted three-body problem. Advances in the Astronautical Sciences, 2008,130(2):1541-1555
|
[56] |
Peng H, Xu SJ. Stability of two groups of multi-revolution elliptic halo orbits in the elliptic restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2015,123:279-303
|
[57] |
Ferrari F, Lavagna M. Periodic motion around libration points in the elliptic restricted three-body problem. Nonlinear Dynamics, 2018,93(2):453-462
|
[58] |
Whitley R, Davis DC, Burke L, et al. Earth-Moon near rectilinear halo and butterfly orbits for lunar surface exploration//AAS/AIAA Astrodynamics Specialist Conference, 2018-8-19-23, USA, UT, Snowbird, AAS 18-406
|
[59] |
Hénon M, Guyot M. Stability of periodic orbits in the restricted problem//In: Giacaglia G.E.O. ed. Periodic Orbits, Stability and Resonances. Dordrecht: Springer, 1970, 349-374
|
[60] |
Capdevila L, Guzzetti D, Howell KC. Various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon. Advances in the Astronautical Sciences, 2014,152(1):3659-3678
|
[61] |
Russell RP. Global search for planar and three-dimensional periodic orbits near Europa. Journal of the Astronautical Sciences, 2006,54(2):199-226
|
[62] |
Escribano TV. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments. [PhD Thesis]. Lafayette: Purdue University, 2013
|
[63] |
Vaquero M, Howell KC. Design of transfer trajectories between resonant orbits in the Earth-Moon restricted problem. Acta Astronautica, 2014,94(1):302-317
|
[64] |
Antoniadou KI, Voyatzis G. Resonant periodic orbits in the exoplanetary systems. Astrophysics and Space Science, 2014,349(2):657-676
|
[65] |
Anderson RL, Campagnola S, Lantoine G. Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2016,124(2):177-199
|
[66] |
张文博, 成跃, 王宁飞. 地月系统循环轨道初步设计与特性分析. 航空学报, 2015,36(7):2197-2206
(Zhang Wenbo, Cheng Yue, Wang Ningfei. Preliminary design and characteristic analysis of cycler orbits in Earth-Moon system. Acta Aeronautica ET Astronautica Sinica, 2015,36(7):2197-2206 (in Chinese))
|
[67] |
Aldrin B. Cyclic trajectory concepts//SAIC presentation to the interplanetary rapid transit study meeting, Jet Propulsion Laboratory. California: 1985,28
|
[68] |
Kauffman J. A successful failure: NASA's crisis communications regarding Apollo 13. Public Relations Review, 2001,27(4):437-448
|
[69] |
黄文德, 郗晓宁, 王威 等. 基于双二体假设的载人登月自由返回轨道特性分析及设计. 宇航学报, 2010,31(5):1297-1303
(Huang Wende, Xi Xiaoning, Wang Wei, et al. Characteristic analysis and design of free return orbit for lunar manned landing based on the double two-body model. Journal of Astronautics, 2010,31(5):1297-1303 (in Chinese))
|
[70] |
彭祺擘, 沈红新, 李海阳. 载人登月自由返回轨道设计及特性分析. 中国科学: 技术科学, 2012,42(3):333-341
(Peng Qibo, Shen Hongxin, Li Haiyang. Free return orbit design and characteristics analysis for manned lunar mission. Science China Technique Science, 2012,42(3):333-341 (in Chinese))
|
[71] |
王丹阳, 邓辉. 地月自由返回轨道设计. 中国空间科学技术, 2017,37(1):57-65
(Wang Danyang, Deng Hui. Cislunar free return trajectory design. Chinese Space Science and Technology, 2017,37(1):57-65 (in Chinese))
|
[72] |
侯锡云, 赵玉晖, 刘林. 月球探测中的无动力返回轨道. 天文学报, 2012,53(4):308-318
(Hou Xiyun, Zhao Yuhui, Liu Lin. Free return trajectories in lunar missions. Acta Astronomica Sinica, 2012,53(4):308-318 (in Chinese))
|
[73] |
谢晨月, 袁泽龙, 王建春 等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021,53(1):1-16
(Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):1-16 (in Chinese))
|
[74] |
刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算. 力学学报, 2021,53(1):213-233
(Liu Cheng, Hu Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):213-233 (in Chinese))
|
[75] |
Parker JS, Anderson RL. Low-Energy Lunar Trajectory Design. John Wiley & Sons, Inc., 2013
|
[76] |
Gómez G, Jorba A, Masdemont J, et al. Study of the transfer from the Earth to a halo orbit around the equilibrium point L1. Celestial Mechanics and Dynamical Astronomy, 1993,56(4):541-562
|
[77] |
Barden BT, Howell KC, Lo MW. Application of dynamical systems theory to trajectory design for a libration point mission//Astrodynamics Conference, 1996-07-29, Reston, Virigina, AIAA-96-3602
|
[78] |
Parker JS. Low-energy ballistic lunar transfers. [PhD Thesis]. Colorado: University of Colorado, 2007
|
[79] |
Parker JS, Born GH. Modeling a low-energy ballistic lunar transfer using dynamical systems theory. Journal of Spacecraft and Rockets, 2008,45(6):1269-1281
|
[80] |
Gordon DP. Transfer to Earth-Moon L2 halo orbits using lunar proximity and invariant manifolds. [Master Thesis]. Lafayette: Purdue University, 2008
|
[81] |
Li MT, Zheng JH. Impulsive lunar halo transfers using the stable manifolds and lunar flybys. Acta Astronautica, 2010,66(9-10):1481-1492
|
[82] |
Zeng H, Zhang JR. Design of impulsive Earth-Moon halo transfers: lunar proximity and direct options. Astrophysics and Space Science, 2016,361(10):328
|
[83] |
Cheng Y, Gómez G, Masdemont JJ, et al. Study of the transfer between libration point orbits and lunar orbits in Earth-Moon system. Celestial Mechanics & Dynamical Astronomy, 2017,128(4):409-433
|
[84] |
Gómez G, Masdemont JJ. Some zero cost transfers between libration point orbits. Advances in the Astronautical Sciences, 2000,105(2):1199-1216
|
[85] |
Gómez G, Jorba A, Simo C. Study of the transfer between halo orbits. Acta Astronautica, 1998,43(9/10):493-520
|
[86] |
Davis KE, Anderson RL, Scheeres DJ, et al. The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celestial Mechanics and Dynamical Astronomy, 2010,107(4):471-485
|
[87] |
Davis KE, Anderson RL, Scheeres DJ, et al. Optimal transfers between unstable periodic orbits using invariant manifolds. Celestial Mechanics and Dynamical Astronomy, 2011,109(3):241-264
|
[88] |
Koon W, Lo M, Marsden JE, et al. Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer-Verlag, Berlin, 2008.
|
[89] |
Howell KC, Kakoi M. Transfers between the Earth-Moon and Sun-Earth systems using manifolds and transit orbits. Acta Astronautica, 2006,59(1-5):367-380
|
[90] |
Kakoi M, Howell KC, Folta D. Access to Mars from Earth-Moon libration point orbits: Manifold and direct options. Acta Astronautica, 2014,102:269-286
|
[91] |
Peng H, Xu SJ. Low-energy transfers to a Lunar multi-revolution elliptic halo orbit. Astrophysics and Space Science, 2015,357(1):1-15
|
[92] |
Whitley R, Martinez R. Options for staging orbits in cislunar space//2016 IEEE Aerospace Conference, 2016-3-5-12, USA, MT, Big Sky, 16121824
|
[93] |
Davis DC, Phillips SM, Howell KC, et al. Stationkeeping and transfer trajectory design for spacecraft in cislunar space. Advances in the Astronautical Sciences, 2018,162:3483-3502
|
[94] |
Guzzetti D, Zimovan EM, Howell KC, et al. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. Advances in the Astronautical Sciences, 2017,160:3199-3218
|
[95] |
杜向南, 杨震. 航天器单脉冲机动可达域求解算法. 力学学报, 2020,52(6):1621-1631
(Du Xiangnan, Yang Zhen. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1621-1631 (in Chinese))
|
[96] |
Belbruno E. Examples of the nonlinear dynamics of ballistic capture and escape in the Earth-Moon system//Astrodynamics Conference, 1990-8-20-22, USA, OR, Portland, AIAA-90-2896
|
[97] |
Belbruno E. Capture dynamics and chaotic motions in celestial mechanics: With applications to the construction of low energy transfers//Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. Princeton University Press, 2018
|
[98] |
Hyeraci N, Topputo F. The role of true anomaly in ballistic capture. Celestial Mechanics and Dynamical Astronomy, 2013,116(2):175-193
|
[99] |
Romagnoli D, Circi C. Earth-Moon weak stability boundaries in the restricted three and four body problem. Celestial Mechanics and Dynamical Astronomy, 2009,103(1):79-103
|
[100] |
Li J, Sun YS. A survey of weak stability boundaries in the Sun-Mars system. Research in Astronomy and Astrophysics, 2015,15(3):376-392
|
[101] |
Topputo F, Belbruno E. Computation of weak stability boundaries: Sun-Jupiter system. Celestial Mechanics and Dynamical Astronomy, 2009,105(1-3):3-17
|
[102] |
Koon WS, Marsden JE, Ross SD, et al. Constructing a low energy transfer between Jovian moons//Celestial Mechanics//Dedicated to Donald Saari for His 60th Birthday: Proceedings of an International Conference on Celestial Mechanics, 1999-12-15—19, USA, Illinois, Evanston, 2002,292:129
|
[103] |
Hyeraci N, Topputo F. Method to design ballistic capture in the elliptic restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2012,33(6):1814-1823
|
[104] |
Luo ZF, Topputo F, Bernelli-Zazzera F, et al. Constructing ballistic capture orbits in the real solar system model, Celestial Mechanics and Dynamical Astronomy, 2014,120(4):433-450
|
[105] |
Fantino E, Gómez G, Masdemont JJ, et al. A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronautica, 2010,67(9-10):1038-1052
|
[106] |
Belbruno EA, Miller J. A ballistic lunar capture trajectory for the Japanese spacecraft hiten. Jet Propulsion Laboratory, IOM, 1990,312:90-94
|
[107] |
Circi C, Teofilatto P. Weak stability boundary trajectories for the deployment of lunar spacecraft constellations. Celestial Mechanics and Dynamical Astronomy, 2006,95(1-4):371-390
|
[108] |
Parker JS, Anderson RL, Peterson A. Surveying ballistic transfers to low lunar orbit. Journal of Guidance, Control, and Dynamics, 2013,36(5):1501-1511
|
[109] |
Sweetser TH. An estimate of the global minimum DV needed for earth-moon transfer. Advances in the Astronautical Sciences, 1991,75:111-120
|
[110] |
Koon WS, Lo MW, Marsden JE, et al. Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy, 2001,81(1-2):63-73
|
[111] |
Circi C, Teofilatto P. Effect of planetary eccentricity on ballistic capture in the solar system. Celestial Mechanics and Dynamical Astronomy, 2005,93(1-4):69-86
|
[112] |
Mingotti G, Topputo F, Bernelli-Zazzera F. Earth-Mars transfers with ballistic escape and low-thrust capture. Celestial Mechanics and Dynamical Astronomy, 2011
|
[113] |
Topputo F, Belbruno E. Earth-Mars transfers with ballistic capture. Celestial Mechanics and Dynamical Astronomy, 2014,121(4):329-346
|
[114] |
Li XY, Qiao D. Earth-Phobos transfer with ballistic trajectory in the Sun-Mars system//2018 AIAA SPACE and Astronautics Forum and Exposition, 2018-9-17-19, USA, FL, Orlando, AIAA 2018-5309
|
[115] |
Roncoli R, Fujii K. Mission design overview for the gravity recovery and interior laboratory (GRAIL) mission//AIAA/AAS Astrodynamics Specialist Conference, 2010-08-02—05, Canada, Ontario, Toronto, AIAA 2010-8383
|
[116] |
Hatch S, Chung M, Kangas J. et al. Trans-Lunar cruise trajectory design of GRAIL (Gravity recovery and interior laboratory) mission//AIAA/AAS Astrodynamics Specialist Conference, 2010-08-02—05, Canada, Ontario, Toronto, AIAA 2010-8394
|
[117] |
Héritier A, Howell KC. Dynamical evolution of natural formations in libration point orbits in a multi-body regime. Acta Astronautica, 2014,102:332-340
|
[118] |
Héritier A, Howell KC. Natural regions near the collinear libration points ideal for space observations with large formations. Journal of the Astronautical Sciences, 2013,60(1):87-108
|
[119] |
Howell KC, Millard LD. Control of satellite imaging formations in multi-body regimes. Acta Astronautica, 2009,64(5-6):554-570
|
[120] |
Millard LD. Control of satellite imaging arrays in multi-body regimes. [PhD Thesis]. Lafayette: Purdue University, 2008
|
[121] |
Out IA. Formation flying in the Sun-Earth/Moon perturbed restricted three-body problem. [Master's Thesis]. Netherlands: Delft University of Technology Faculty of Aerospace Engineering, 2017
|
[122] |
Gómez G, Lo MW, Masdemont JJ, et al. Simulation of formation flight near L2 for the TPF mission//AAS/AIAA Spaceflight Mechanics Meeting, 2001-02-11—15, USA, California, Santa Barbara, AAS 01-305
|
[123] |
Howell KC, Marchand BG. Natural and non-natural spacecraft formations near the L1 and L2 libration points in the Sun-Earth/Moon ephemeris system. Dynamics and Stability of Systems, 2005,20(1):149-173
|
[124] |
Howell KC, Marchand BG. Formations near the libration points: Design strategies using natural and non-natural arcs//Proceedings of GSFC 2nd International Symposium on Formation Flying Missions and Technologies, 2004-09-14—16, USA, Washington, D.C., 20060048521
|
[125] |
Marchand BG. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system. [PhD Thesis]. Lafayette: School of Aeronautics and Astronautics, Purdue University, 2004
|
[126] |
王峰, 陈雪芹, 张世杰 等. 基于改进PEA的日地L2平动点编队飞行高精度位置保持. 宇航学报, 2011,32(5):982-990
(Wang Feng, Chen Xueqin, Zhang Shijie, et al. Improved PEA-Based high accuracy relative position keeping for spacecraft formation flight in Sun-Earth L2 point. Journal of Astronautics, 2011,32(5):982-990 (in Chinese))
|
[127] |
Wong H, Kapila V. Spacecraft formation flying near Sun-Earth L2 lagrange point: trajectory generation and adaptive full-state feedback control//Proceedings of GSFC 2nd International Symposium on Formation Flying Missions and Technologies, 2004-9-14-16, USA, Washington, D.C., 20060048533
|
[128] |
姜春生, 王永, 李恒年 等. 日地平动点编队飞行自抗扰轨道维持控制. 空间控制技术与应用, 2017,43(1):49-54, 60
(Jiang Chunsheng, Wang Yong, Li Hengnian, et al. ADRC-Based orbit maintaining control of spacecraft formation flying around halo orbits about the Sun-Earth libration points. Aerospace Control and Application, 2017,43(1):49-54,60 (in Chinese))
|
[129] |
Infeld SI, Josselyn SB, Murray W, et al. Design and control of libration point spacecraft formations. Journal of Guidance, Control, and Dynamics, 2007,30(4):899-909
|
[130] |
张燕, 荆武兴. 基于日地月方位信息的月球卫星自主导航. 宇航学报, 2005,26(4):495-498, 523
(Zhang Yan, Jing Wuxing. Autonomous navigation for lunar satellite based on the optical information of Sun-Earth-Moon. Journal of Astronautics, 2005,26(4):495-498, 523 (in Chinese))
|
[131] |
Hill K, Lo MW, Born GH. Linked, autonomous, interplanetary satellite orbit navigation (LiAISON) in lunar halo orbits//AAS/AIAA Astrodynamics Specialist Conference, 2005-08-07—11, USA, California, Lake Tahoe, AAS 05-400
|
[132] |
Hill K, Born GH. Autonomous interplanetary orbit determination using satellite-to-satellite tracking. Journal of Guidance, Control, and Dynamics, 2012,30(3):679-686
|
[133] |
Hill K, Born GH. Autonomous orbit determination from lunar halo orbits using crosslink range. Journal of Spacecraft and Rockets, 2012,45(3):548-553
|
[134] |
Farquhar RW, Dunham DW, Guo YP, et al. Utilization of libration points for human exploration in the Sun-Earth-Moon system and beyond. Acta Astronautica, 2004,55(3-9):687-700
|
[135] |
William DP, Caley B, Selena H, et al. Trajectory design considerations for human missions to explore the lunar farside from the Earth-Moon lagrange point EM-L2//AIAA Space 2013 Conference and Exposition, 2013-09-10—12, USA, CA, San Diego, AIAA 2013-5478
|
[136] |
孙超, 唐玉华, 李翔宇 等. 地$!-!$月$L_2$点中继星月球近旁转移轨道设计. 深空探测学报, 2017,4(3):264-269, 275
(Sun Chao, Tang Yuhua, Li Xiangyu, et al. Design of Earth-Moon $L_2$ halo orbit transfer trajectory for relay satellites using lunar flybys. Journal of Deep Space Exploration, 2017,4(3):264-269, 275 (in Chinese))
|
[137] |
唐玉华. 地月$L_2$点中继卫星轨道设计与控制问题研究. [博士论文]. 北京: 北京理工大学, 2018
(Tang Yuhua. Study of trajectory design and control of Earth-Moon $L_2$ relay satellite. [PhD Thesis]. Beijing: Beijing Institute of Technology 2018 (in Chinese))
|
[138] |
刘磊, 曹建峰, 胡松杰 等. 地月$L_2$点周期轨道的月球背面覆盖分析. 深空探测学报, 2017,4(4):361-366
(Liu Lei, Cao Jianfeng, Hu Songjie, et al. Coverage of lunar farside surface of the Earth-Moon $L_2$ periodic orbits. Journal of Deep Space Exploration, 2017,4(4):361-366 (in Chinese))
|
[139] |
Zhang L, Xu B. A Universe Light House - Candidate architectures of the libration point satellite navigation system. Journal of Navigation, 2014,67(5):737-752
|
[140] |
Zhang L, Xu B. Navigation performance of the libration point satellite navigation system in cislunar space. Journal of Navigation, 2015,68(2):367-382
|
[141] |
Zhang L, Xu B. Simplified constellation architecture for the libration point satellite navigation system. Journal of Navigation, 2016,69(5):1082-1096
|
[142] |
Daniele R, Christian C. Lissajous trajectories for lunar global positioning and communication systems. Celestial Mechanics and Dynamical Astronomy, 2010,107(4):409-425
|
[143] |
Ren Y, Shan JJ. Libration point orbits for lunar global positioning systems. Advances in Space Research, 2013,51(7):1065-1079
|