EI、Scopus 收录
中文核心期刊
Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339
Citation: Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339

INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM

  • The influence of aerodynamic deceleration performances and flow features of the rigid disk-gap-band parachute system at Mach 2.0 with/without the capsule was studied. For the numerical simulation of unsteady compressible fluid, it adopted the three-layer block-structured adaptive mesh refinement, and a hybrid TCD (tuned center difference) and WENO (weighted essentially non-oscillatory) algorithm and the large-eddy simulation method with the stretched-vortex sub-grid model were used to process the shock waves and large scale turbulence vortex in supersonic flow. The results show that, the flow structure of the parachute system is stable and the disturbance is small without the capsule; when the capsule exists, the periodic interaction between the turbulent wake behind the capsule and the reverse fluid from the inside of the canopy and the parachute shock wave, makes the position of the shock wave move forward and the angle of it become smaller. The flow flied inside the canopy is difficult to reach a stable state, which intensifies the aerodynamic drag oscillation of the parachute system. The aerodynamic drag coefficient of the parachute system is reduced, and the wake structure of the parachute system is more complicated.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return