Citation: | Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. DOI: 10.6052/0459-1879-20-304 |
[1] |
Mott NF. Fracture of metal: Theoretical consideration. Engineering, 1948,165:16-18
|
[2] |
Radon JC, Turner CE. Fracture toughness measurements by instrumented impact test. Engineering Fracture Mechanics, 1969,1:411-428
|
[3] |
Ireland DR. Critical review of instrumented impact testing//Proceedings International Conference on Dynamic Fracture Toughness, 1977: 47-62
|
[4] |
Kabayashi AS, Seo KK. A dynamic analysis of modifier compact-tension specimen using homolite-100 and polycarbonate plates. Experimental Mechanics, 1980,20:73-79
|
[5] |
杨滨, 轩福贞. 基于夏比冲击吸收能量的断裂韧性估算方法比较. 压力容器, 2016,33:32-39
|
[6] |
潘建华, 陈学东, 韩豫. 196奥氏体不锈钢母材与焊缝的动态断裂韧性. 爆炸与冲击, 2013,33:381-386
(Pan Jianhua, Chen Xuedong, Han Yu. Dynamic fracture toughness of S30408 austenitic stainless steel base and weld metals at 196. Explosion and Shock Waves. 2013,33:381-386 (in Chinese))
|
[7] |
Sathyanarayanan S, Singh J, Moitra A. et al. Effect of loading rate and constraint on dynamic ductile fracture toughness of P91 steel. Proceedings of Fatigue, Durability and Fracture Mechanics, 2018: 185-201
|
[8] |
Bohme W, Kalthoff JF. The behavior of notched bend specimens in impact testing. International Journal of Fracture, 1982,20:139-143
|
[9] |
Kalthoff JF. On the measurement of dynamic fracture toughness-a review of recent work. International Journal of Fracture, 1985,27:227-298
|
[10] |
王琼皎, 郭伟国, 左红星 等. 超强钢18NiC250在不同加载速度下的断裂韧性. 爆炸与冲击, 2013,33:238-242
(Wang Qiongjiao, Guo Weiguo, Zuo Hongxing, et al. Fracture toughness of ultra-strength steel 18NiC250 at different loading rate. Explosion and Shock Waves. 2013,33:238-242 (in Chinese))
|
[11] |
孟庆良, 夏源明. 弹塑性材料裂纹扩展的动态阻力曲线实验研究简介. 机械强度, 2004,26:172-176
(Meng Qingliang, Xia Yuanming. Brief introduction of experimental study on the dynamic -resistance curve of crack growth of elastic-plastic material. Journal of Mechanical Strength. 2004,26:172-176 (in Chinese))
|
[12] |
许泽建, 李玉龙, 李娜 等. 加载速度对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响. 金属学报, 2006,42:965-970
(Xu Zejian, Li Yulong, Li Na, et al. Effect of loading rate on mode I dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A. Acta Metallurgica Sinica. 2006,42:965-970 (in Chinese))
|
[13] |
宫能平, 李贤. 45#钢动态断裂韧性测试的试验研究. 安徽理工大学学报(自然科学版), 2007,27:65-68
(Gong Nengping, Li Xian. Experimental study of dynamic fracture toughness of 45# steel. Journal of Anhui University of Science and Technology (Natural Science). 2007,27:65-68 (in Chinese))
|
[14] |
Chen R, Xia K, Dai F. et al. Determination of dynamic fracture parameters using a semicircular bend technique in split Hopkinson pressure bar testing. Engineering Fracture Mechanics, 2009,76:1268-1276
|
[15] |
Guo CH, Jiang FC, Liu RT. et al. Size effect on the contact between fracture specimen and supports in Hopkinson bar loaded fracture test. International Journal of Fracture, 2011,169:77-84
|
[16] |
Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness. Experimental Mechanics, 2010,50:783-791
|
[17] |
崔新忠, 范亚夫, 纪伟 等. 用Hopkinson杆技术研究材料动态断裂韧性的进展. 兵器材料科学与工程, 2010,33:418-427
(Cui Xinzhong, Fan Yafu, Ji Wei, et al. Progress in the research of dynamic fracture toughness based on Hopkinson bar technique. Ordnance Material Science and Engineering. 2010,33:418-427 (in Chinese))
|
[18] |
邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术. 力学学报, 2017,49:117-127
(Zou Guangping, Chen He, Chang Zhongliang. A modified mode II dynamic fracture test technique based on SHTB. Chinese Journal of Theoretical and Applied Mechanics. 2017,49:117-127 (in Chinese))
|
[19] |
Sih GC, Lober JF. Determination of stress intensity factors in halfplane containing several moving cracks. Applied Mathematics, 1969,27:193-213
|
[20] |
李玉龙, 刘元镛. 用裂纹张开位移计算三点弯曲试样的动态应力强度因子. 爆炸与冲击, 1993,13:249-256
(Li Yulong, Liu Yuanyong. Calculation of DSIF of three point bending specimen using the method of DCOD. Explosion and Shock Waves. 1993,13:249-256 (in Chinese))
|
[21] |
Popelar CH, Anderson CE, Nagy A. An experimental method for determining dynamic fracture toughness. Experimental Mechanics, 2000,40:401-407
|
[22] |
Weibrod G, Rittel D. A method for dynamic fracture toughness determination using short beams. International Journal of Fracture, 2000,104:89-103
|
[23] |
钟卫洲, 罗景润. 冲击载荷下三点弯曲试样的有限元分析. 环境技术, 2004,22:7-9
(Zhong Weizhou, Luo Jingrun. Finite element analysis on three-point bending sample loaded by impact loading. Environmental Technology. 2004,22:7-9 (in Chinese))
|
[24] |
李玉龙, 刘元镛. 三点弯曲试样动态冲击特性的有限元分析. 计算力学学报, 1995,12:100-115
(Li Yulong, Liu Yuanyong. Dynamic behavior of three point bending specimen under impact loading by using finite element method. Chinese Journal of Computational Mechanics. 1995,12:100-115 (in Chinese))
|
[25] |
Dally JW, Barker DB. Dynamic measurements of initiation toughness at high loading rates. Experimental Mechanics, 1988,28:298-903
|
[26] |
Sih GC, Ravear RS, Embley GT. Impact response of a finite crack in plane extension. International Journal of Solid and Structure, 1972,8:977-993
|
[27] |
Kishimoto K, Aoki S, Sakata M. Simple formula for dynamic stress intensity factor of pre-crack charpy specimen. Engineering Fracture Mechanics, 1980,2:501-507
|
[28] |
Schindler HJ. Estimation of the dynamic J-R curve from a single impact bending test//Mechanisms and Mechanics of Damage and Failure of European Conference On Fracture-11, France, vol.3. UK: EMAS, 1996: 2007-12
|
[29] |
Sathyanarayanan S, Sasikala G, Ray SK. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel. International Journal of Pressure Vessels and Piping, 2004,81:19-425
|
[30] |
Sreenivasan PR, Shastry CG, Mathew MD. et al. Dynamic fracture toughness and Charpy transition properties of a sevice-exposed 2.25Cr-1Mo reheater header pipe. Journal of Engineering Materials and Technology, 2003,125:227-233
|
[31] |
Magudeeswaran G, Balasubramanian V. Dynamic fracture toughness behavior of armor-grade Q&T steel weldments: Effect of weld metal composition and microstructure. Metal and Materials International, 2009,15:1017-1026
|
[32] |
Ruland DL, Wang YY, Wilkoski G. et al. Characterizing dynamic fracture toughness of linepipe steel using the press-notch drop-weight-tear test specimen. Engineering Fracture Mechanics, 2004,71:2533-2549
|
[33] |
姜风春, 刘瑞堂, 刘殿奎. 船用921A钢动态断裂韧性测试研究. 实验力学, 1990,14:96-101
(Jiang Chunfeng, Liu Ruitang, Liu Diankui. Study of dynamic fracture toughness measurement of 921A shipbuilding steel. Journal of Experimental Mechanics. 1990,14:96-101 (in Chinese))
|
[34] |
Nakamura T, Shih CF, Freund LB. Elastic-Plastic analysis of a dynamically loaded circumferentially notched round bar. Engineering Fracture Mechanics, 1985,22:437-452
|
[35] |
张晓欣, 刘瑞堂. 某船用钢动态弹塑性断裂韧性的试验测试. 实验力学, 2002,17:153-159
(Zhang Xiaoxin, Liu Ruitang. An experimental measurement for the dynamic elastic-plastic fracture toughness of ship-building steel. Journal of Experimental Mechanics. 2002,17:153-159 (in Chinese))
|
[36] |
Rethore J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. Numerical Methods in Engineering, 2005(63):631-659
|
[37] |
Lautridou JC, Pineau A. Crack initiation and stable crack growth resistance in a 508 steels in relation to inclusion distribution. Engineering Fracture Mechanics, 1981(15):55-71
|
[38] |
Xu ZJ, Li YL, Huang FL. Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials. Acta Mechanica Sinica, 2012,28:424-431
|
[39] |
Xu ZJ, Li YL. Dynamic fracture toughness of high strength metals under impact loading: increase or decrease. Acta Mechanica Sinica, 2011,27:559-566
|
[40] |
孔祥伟, 李绪清, 兰亮云 等. Q390钢韧脆转变区冲击吸收功的类主曲线模型. 东北大学学报(自然科学版), 2018,39:663-667
(Kong Xiangwei, Li Xuqing, Lan Liangyun, et al. Impact-energy principle resembling master curve model of Q390 steel in transition temperature region. Journal of Northeastern University (Natural Science). 2018,39:663-667 (in Chinese))
|
[41] |
Chao YJ, Ward JD, Sands RG. Charpy impact energy facture toughness and ductile-brittle transition temperature of dual-phase 590 steel. Materials & Design, 2007,28:551-557
|
[42] |
史伟, 赵江涛, 王顺花 等. 12Cr2Mo1R钢的韧脆转变机理. 金属热处理, 2015,40:110-113
(Shi Wei, Zhao Jiangtao, Wang Shunhua, et al. Toughness-brittle transition mechanism of 12Cr2Mo1R steel. Heat Treatment of Metals. 2015,40:110-113 (in Chinese))
|
[43] |
王元清, 林云, 张延年 等. 高强度钢材Q460C断裂韧性低温试验. 吉林大学学报(工学版), 2012,42:639-644
(Wang Yuanqing, Lin Yun, Zhang Yannian, et al. Test on the fracture toughness of high-strength steel Q460C at low temperature. Journal of Jilin University (Engineering and Technology Edition). 2012,42:639-644 (in Chinese))
|
[44] |
Chatterjee A, Chakrabarti D, Moitra A. et al. Effect of deformation temperature on the ductile-brittle transition behavior of a modified 9Cr-1Mo steel. Materials Science and Engineering A, 2015,630:58-70
|
[45] |
钟群鹏, 周煜, 张峥. 裂纹学. 北京: 高等教育出版社, 2014: 27
(Zhong Qunpeng, Zhou Yu, Zhang Zheng. Crack. Beijing: Higher Education Press, 2014: 27(in Chinese))
|
[46] |
Shlyannikov VN, Boychenko NV, Tartaygasheva AM. In-plane and out-of-plane crack-tip constraint effects under biaxial nonlinear deformation. Engineering Fracture Mechanics, 2011,78:1771-1783
|
[47] |
Shlyannikov VN, Boychenko NV, Tumanov AV. The elastic and plastic constraint parameters for three-dimensional problem. Engineering Fracture Mechanics, 2014,127:83-96
|
[48] |
Zhao J, Guo W, She C. The in-plane and out-of-plane stress constraint factors and K-T-T description of stress field near the border of a semi-elliptical surface crack. International Journal Fatigue, 2007,29:435-443
|
[49] |
Huang XL, Liu YH, Huang XB. New constraint parameters based on crack tip plastic zone: The constraint parameters based on crack tip plastic zone: Theoretical derivations and effectiveness verification. International Journal of Solids and Structures, 2020,190:129-147
|
[50] |
Bao C, Cai LX, He GW. et al. Normalization method for evaluating J-resistance curves of small-sized CIET specimen and crack front constraints. International Journal of Solids and Structures, 2016, 94-54:60-75
|
[1] | Ding Bin, Gao Yuan, Chen Yuli, Li Xiaoyan. RECENT ADVANCES IN ATOMISTIC FRACTURE SIMULATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 347-364. DOI: 10.6052/0459-1879-23-281 |
[2] | Wu Yuanjun, Xu Xikai, Bao Chen, Cai Lixun. EXPERIMENTAL STUDY ON DUCTILE-TO-BRITTLE TRANSITION OF RPV STEEL CONSIDERING GEOMETRIC SIZE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2363-2372. DOI: 10.6052/0459-1879-23-264 |
[3] | Cui Guangshun, Bao Chen, Li Yilei, Sun Jianhua, Du Kaikai. EXPERIMENTAL STUDY ON THE EFFECT OF LOADING RATE AND GEOMETRIC SIZE ON THE FRACTURE BEHAVIOR OF CHINESE A508-III STEEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1970-1981. DOI: 10.6052/0459-1879-21-613 |
[4] | Liu Ming, Hou Dongyang, Gao Chenghui. STUDY ON FRACTURE TOUGHNESS OF SEMICONDUCTOR MATERIAL USING VICKERS AND BERKOVICH INDENTERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 413-423. DOI: 10.6052/0459-1879-20-349 |
[5] | Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377 |
[6] | Xie-Quan LIU. Fracture toughness of eutectic ceramic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 682-690. DOI: 10.6052/0459-1879-2010-4-lxxb2009-228 |
[7] | THE EFFECTIVE FRACTURE TOUGHNESS OF MICROCRACKED BODIES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 109-115. DOI: 10.6052/0459-1879-1998-1-1995-105 |
[8] | A MICRO-MODEL OF DUCTILE FRACTUKE AND IT’S APPLICAION TO CONSTRAINED FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 120-124. DOI: 10.6052/0459-1879-1995-S-1995-513 |
[9] | FRACTAL KINEMAIICS OF CRACK PROPAGAtiON IN BRITTLE MAtERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 757-762. DOI: 10.6052/0459-1879-1994-6-1995-606 |
1. |
王鹏欢,汤名锴,王森林. 激光选区熔化成形多层级Gyroid点阵结构的力学性能研究. 力学学报. 2025(01): 148-161 .
![]() | |
2. |
李瑶,高慧贤,李芹芹,王子超,罗文忠. TC4合金断裂韧性与冲击韧性的关系研究. 兵器材料科学与工程. 2023(03): 109-115 .
![]() | |
3. |
沈琪 ,白玉 ,范世超 ,郝海 . 热处理工艺对H11热作模具钢力学性能的影响. 热加工工艺. 2022(12): 89-92+96 .
![]() | |
4. |
崔光顺,包陈,李一磊,孙建华,杜开开. 加载速率和几何尺寸对国产A508-Ⅲ钢断裂行为影响的实验研究. 力学学报. 2022(07): 1970-1981 .
![]() | |
5. |
徐志鹏,刘晟,万宏凤. 采煤机调高千斤顶失效分析及预防措施. 机电产品开发与创新. 2022(06): 88-90 .
![]() | |
6. |
李朋洲,李一磊,姚迪,罗家成,孙磊,乔红威. 主管道材料高温力学性能研究. 核动力工程. 2022(06): 139-145 .
![]() | |
7. |
于培师,赵军华,郭万林. 三维损伤容限设计:离面约束理论与疲劳断裂准则. 机械工程学报. 2021(16): 87-105 .
![]() | |
8. |
何沐阳,韦家祥,尹佳静,隆霞,周琛. 基于J-C模型的11MnNiMo钢本构参数标定及验证. 应用科技. 2021(06): 121-126 .
![]() |