EI、Scopus 收录
中文核心期刊
Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. DOI: 10.6052/0459-1879-20-304
Citation: Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. DOI: 10.6052/0459-1879-20-304

DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES

  • The phenomenon of ductile-brittle transition and the measurement of dynamic fracture toughness of metallic materials under impact loading are important parts of the research on dynamic mechanical properties of metal materials. In view of the lack of understanding of ductile-brittle transition of metallic materials under impact loading and the difficulty in measuring the dynamic J-resistance curve of ductile materials at relative low loading rate, a method is proposed to measure the ductile-brittle transition process of 15MnTi and 11MnNiMo steels at different loading rates, and the effect of crack tip constraint on the rate change of dynamic ductile-brittle transition of the two materials, by using high-speed material testing machine and its corresponding special fixtures. The dynamic fracture toughness of 15MnTi steel under low loading rate was measured by adjusting the length of compression bar and changing the crack propagation by means of the brake of upper roller. The experimental results indicate that the CT specimen of 15MnTi steel is characterized as ductile fracture when loading velocity is lower than 0.025~m/s, and the fracture character of CT specimen of 15MnTi steel is ductile-brittle combination when loading velocity is between 0.1~m/s and 0.5~m/s, and brittle fracture of the CT specimen of 15MnTi steel starts from 0.5~m/s. The phenomenon of brittle fracture followed by ductile fracture for the CT specimen of 11MnNiMo steel occurs when the loading rate is greater than 1.5~m/s. The dynamic brittle fracture rate of 15MnTi and 11MnNiMo steels is significantly affected by crack tip constraint, and the dynamic brittle fracture rate of the material decreases obviously with the increase of in-plane constraint and out of plane constraint. It is also found that in the three-point bending tests, the fracture toughness of 15MnTi steel decreases slowly with the increase of loading rate, when the loading rate is lower than 8788~MPamm/s.
  • [1]
    Mott NF. Fracture of metal: Theoretical consideration. Engineering, 1948,165:16-18
    [2]
    Radon JC, Turner CE. Fracture toughness measurements by instrumented impact test. Engineering Fracture Mechanics, 1969,1:411-428
    [3]
    Ireland DR. Critical review of instrumented impact testing//Proceedings International Conference on Dynamic Fracture Toughness, 1977: 47-62
    [4]
    Kabayashi AS, Seo KK. A dynamic analysis of modifier compact-tension specimen using homolite-100 and polycarbonate plates. Experimental Mechanics, 1980,20:73-79
    [5]
    杨滨, 轩福贞. 基于夏比冲击吸收能量的断裂韧性估算方法比较. 压力容器, 2016,33:32-39
    [6]
    潘建华, 陈学东, 韩豫. 196circ奥氏体不锈钢母材与焊缝的动态断裂韧性. 爆炸与冲击, 2013,33:381-386

    (Pan Jianhua, Chen Xuedong, Han Yu. Dynamic fracture toughness of S30408 austenitic stainless steel base and weld metals at 196circ. Explosion and Shock Waves. 2013,33:381-386 (in Chinese))
    [7]
    Sathyanarayanan S, Singh J, Moitra A. et al. Effect of loading rate and constraint on dynamic ductile fracture toughness of P91 steel. Proceedings of Fatigue, Durability and Fracture Mechanics, 2018: 185-201
    [8]
    Bohme W, Kalthoff JF. The behavior of notched bend specimens in impact testing. International Journal of Fracture, 1982,20:139-143
    [9]
    Kalthoff JF. On the measurement of dynamic fracture toughness-a review of recent work. International Journal of Fracture, 1985,27:227-298
    [10]
    王琼皎, 郭伟国, 左红星 等. 超强钢18NiC250在不同加载速度下的断裂韧性. 爆炸与冲击, 2013,33:238-242

    (Wang Qiongjiao, Guo Weiguo, Zuo Hongxing, et al. Fracture toughness of ultra-strength steel 18NiC250 at different loading rate. Explosion and Shock Waves. 2013,33:238-242 (in Chinese))
    [11]
    孟庆良, 夏源明. 弹塑性材料裂纹扩展的动态J阻力曲线实验研究简介. 机械强度, 2004,26:172-176

    (Meng Qingliang, Xia Yuanming. Brief introduction of experimental study on the dynamic J-resistance curve of crack growth of elastic-plastic material. Journal of Mechanical Strength. 2004,26:172-176 (in Chinese))
    [12]
    许泽建, 李玉龙, 李娜 等. 加载速度对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响. 金属学报, 2006,42:965-970

    (Xu Zejian, Li Yulong, Li Na, et al. Effect of loading rate on mode I dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A. Acta Metallurgica Sinica. 2006,42:965-970 (in Chinese))
    [13]
    宫能平, 李贤. 45#钢动态断裂韧性测试的试验研究. 安徽理工大学学报(自然科学版), 2007,27:65-68

    (Gong Nengping, Li Xian. Experimental study of dynamic fracture toughness of 45# steel. Journal of Anhui University of Science and Technology (Natural Science). 2007,27:65-68 (in Chinese))
    [14]
    Chen R, Xia K, Dai F. et al. Determination of dynamic fracture parameters using a semicircular bend technique in split Hopkinson pressure bar testing. Engineering Fracture Mechanics, 2009,76:1268-1276
    [15]
    Guo CH, Jiang FC, Liu RT. et al. Size effect on the contact between fracture specimen and supports in Hopkinson bar loaded fracture test. International Journal of Fracture, 2011,169:77-84
    [16]
    Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness. Experimental Mechanics, 2010,50:783-791
    [17]
    崔新忠, 范亚夫, 纪伟 等. 用Hopkinson杆技术研究材料动态断裂韧性的进展. 兵器材料科学与工程, 2010,33:418-427

    (Cui Xinzhong, Fan Yafu, Ji Wei, et al. Progress in the research of dynamic fracture toughness based on Hopkinson bar technique. Ordnance Material Science and Engineering. 2010,33:418-427 (in Chinese))
    [18]
    邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术. 力学学报, 2017,49:117-127

    (Zou Guangping, Chen He, Chang Zhongliang. A modified mode II dynamic fracture test technique based on SHTB. Chinese Journal of Theoretical and Applied Mechanics. 2017,49:117-127 (in Chinese))
    [19]
    Sih GC, Lober JF. Determination of stress intensity factors in halfplane containing several moving cracks. Applied Mathematics, 1969,27:193-213
    [20]
    李玉龙, 刘元镛. 用裂纹张开位移计算三点弯曲试样的动态应力强度因子. 爆炸与冲击, 1993,13:249-256

    (Li Yulong, Liu Yuanyong. Calculation of DSIF of three point bending specimen using the method of DCOD. Explosion and Shock Waves. 1993,13:249-256 (in Chinese))
    [21]
    Popelar CH, Anderson CE, Nagy A. An experimental method for determining dynamic fracture toughness. Experimental Mechanics, 2000,40:401-407
    [22]
    Weibrod G, Rittel D. A method for dynamic fracture toughness determination using short beams. International Journal of Fracture, 2000,104:89-103
    [23]
    钟卫洲, 罗景润. 冲击载荷下三点弯曲试样的有限元分析. 环境技术, 2004,22:7-9

    (Zhong Weizhou, Luo Jingrun. Finite element analysis on three-point bending sample loaded by impact loading. Environmental Technology. 2004,22:7-9 (in Chinese))
    [24]
    李玉龙, 刘元镛. 三点弯曲试样动态冲击特性的有限元分析. 计算力学学报, 1995,12:100-115

    (Li Yulong, Liu Yuanyong. Dynamic behavior of three point bending specimen under impact loading by using finite element method. Chinese Journal of Computational Mechanics. 1995,12:100-115 (in Chinese))
    [25]
    Dally JW, Barker DB. Dynamic measurements of initiation toughness at high loading rates. Experimental Mechanics, 1988,28:298-903
    [26]
    Sih GC, Ravear RS, Embley GT. Impact response of a finite crack in plane extension. International Journal of Solid and Structure, 1972,8:977-993
    [27]
    Kishimoto K, Aoki S, Sakata M. Simple formula for dynamic stress intensity factor of pre-crack charpy specimen. Engineering Fracture Mechanics, 1980,2:501-507
    [28]
    Schindler HJ. Estimation of the dynamic J-R curve from a single impact bending test//Mechanisms and Mechanics of Damage and Failure of European Conference On Fracture-11, France, vol.3. UK: EMAS, 1996: 2007-12
    [29]
    Sathyanarayanan S, Sasikala G, Ray SK. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel. International Journal of Pressure Vessels and Piping, 2004,81:19-425
    [30]
    Sreenivasan PR, Shastry CG, Mathew MD. et al. Dynamic fracture toughness and Charpy transition properties of a sevice-exposed 2.25Cr-1Mo reheater header pipe. Journal of Engineering Materials and Technology, 2003,125:227-233
    [31]
    Magudeeswaran G, Balasubramanian V. Dynamic fracture toughness behavior of armor-grade Q&T steel weldments: Effect of weld metal composition and microstructure. Metal and Materials International, 2009,15:1017-1026
    [32]
    Ruland DL, Wang YY, Wilkoski G. et al. Characterizing dynamic fracture toughness of linepipe steel using the press-notch drop-weight-tear test specimen. Engineering Fracture Mechanics, 2004,71:2533-2549
    [33]
    姜风春, 刘瑞堂, 刘殿奎. 船用921A钢动态断裂韧性测试研究. 实验力学, 1990,14:96-101

    (Jiang Chunfeng, Liu Ruitang, Liu Diankui. Study of dynamic fracture toughness measurement of 921A shipbuilding steel. Journal of Experimental Mechanics. 1990,14:96-101 (in Chinese))
    [34]
    Nakamura T, Shih CF, Freund LB. Elastic-Plastic analysis of a dynamically loaded circumferentially notched round bar. Engineering Fracture Mechanics, 1985,22:437-452
    [35]
    张晓欣, 刘瑞堂. 某船用钢动态弹塑性断裂韧性的试验测试. 实验力学, 2002,17:153-159

    (Zhang Xiaoxin, Liu Ruitang. An experimental measurement for the dynamic elastic-plastic fracture toughness of ship-building steel. Journal of Experimental Mechanics. 2002,17:153-159 (in Chinese))
    [36]
    Rethore J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. Numerical Methods in Engineering, 2005(63):631-659
    [37]
    Lautridou JC, Pineau A. Crack initiation and stable crack growth resistance in a 508 steels in relation to inclusion distribution. Engineering Fracture Mechanics, 1981(15):55-71
    [38]
    Xu ZJ, Li YL, Huang FL. Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials. Acta Mechanica Sinica, 2012,28:424-431
    [39]
    Xu ZJ, Li YL. Dynamic fracture toughness of high strength metals under impact loading: increase or decrease. Acta Mechanica Sinica, 2011,27:559-566
    [40]
    孔祥伟, 李绪清, 兰亮云 等. Q390钢韧脆转变区冲击吸收功的类主曲线模型. 东北大学学报(自然科学版), 2018,39:663-667

    (Kong Xiangwei, Li Xuqing, Lan Liangyun, et al. Impact-energy principle resembling master curve model of Q390 steel in transition temperature region. Journal of Northeastern University (Natural Science). 2018,39:663-667 (in Chinese))
    [41]
    Chao YJ, Ward JD, Sands RG. Charpy impact energy facture toughness and ductile-brittle transition temperature of dual-phase 590 steel. Materials & Design, 2007,28:551-557
    [42]
    史伟, 赵江涛, 王顺花 等. 12Cr2Mo1R钢的韧脆转变机理. 金属热处理, 2015,40:110-113

    (Shi Wei, Zhao Jiangtao, Wang Shunhua, et al. Toughness-brittle transition mechanism of 12Cr2Mo1R steel. Heat Treatment of Metals. 2015,40:110-113 (in Chinese))
    [43]
    王元清, 林云, 张延年 等. 高强度钢材Q460C断裂韧性低温试验. 吉林大学学报(工学版), 2012,42:639-644

    (Wang Yuanqing, Lin Yun, Zhang Yannian, et al. Test on the fracture toughness of high-strength steel Q460C at low temperature. Journal of Jilin University (Engineering and Technology Edition). 2012,42:639-644 (in Chinese))
    [44]
    Chatterjee A, Chakrabarti D, Moitra A. et al. Effect of deformation temperature on the ductile-brittle transition behavior of a modified 9Cr-1Mo steel. Materials Science and Engineering A, 2015,630:58-70
    [45]
    钟群鹏, 周煜, 张峥. 裂纹学. 北京: 高等教育出版社, 2014: 27

    (Zhong Qunpeng, Zhou Yu, Zhang Zheng. Crack. Beijing: Higher Education Press, 2014: 27(in Chinese))
    [46]
    Shlyannikov VN, Boychenko NV, Tartaygasheva AM. In-plane and out-of-plane crack-tip constraint effects under biaxial nonlinear deformation. Engineering Fracture Mechanics, 2011,78:1771-1783
    [47]
    Shlyannikov VN, Boychenko NV, Tumanov AV. The elastic and plastic constraint parameters for three-dimensional problem. Engineering Fracture Mechanics, 2014,127:83-96
    [48]
    Zhao J, Guo W, She C. The in-plane and out-of-plane stress constraint factors and K-T-TZ description of stress field near the border of a semi-elliptical surface crack. International Journal Fatigue, 2007,29:435-443
    [49]
    Huang XL, Liu YH, Huang XB. New constraint parameters based on crack tip plastic zone: The constraint parameters based on crack tip plastic zone: Theoretical derivations and effectiveness verification. International Journal of Solids and Structures, 2020,190:129-147
    [50]
    Bao C, Cai LX, He GW. et al. Normalization method for evaluating J-resistance curves of small-sized CIET specimen and crack front constraints. International Journal of Solids and Structures, 2016, 94-54:60-75
  • Related Articles

    [1]Ding Bin, Gao Yuan, Chen Yuli, Li Xiaoyan. RECENT ADVANCES IN ATOMISTIC FRACTURE SIMULATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 347-364. DOI: 10.6052/0459-1879-23-281
    [2]Wu Yuanjun, Xu Xikai, Bao Chen, Cai Lixun. EXPERIMENTAL STUDY ON DUCTILE-TO-BRITTLE TRANSITION OF RPV STEEL CONSIDERING GEOMETRIC SIZE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2363-2372. DOI: 10.6052/0459-1879-23-264
    [3]Cui Guangshun, Bao Chen, Li Yilei, Sun Jianhua, Du Kaikai. EXPERIMENTAL STUDY ON THE EFFECT OF LOADING RATE AND GEOMETRIC SIZE ON THE FRACTURE BEHAVIOR OF CHINESE A508-III STEEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1970-1981. DOI: 10.6052/0459-1879-21-613
    [4]Liu Ming, Hou Dongyang, Gao Chenghui. STUDY ON FRACTURE TOUGHNESS OF SEMICONDUCTOR MATERIAL USING VICKERS AND BERKOVICH INDENTERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 413-423. DOI: 10.6052/0459-1879-20-349
    [5]Xie Yiling, Liu Ze. A GENERAL METHOD TO INTRODUCE PRE-CRACK IN BULK METALLIC GLASSES FOR PLANE STRAIN FRACTURE TOUGHNESS TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 392-399. DOI: 10.6052/0459-1879-19-377
    [6]Xie-Quan LIU. Fracture toughness of eutectic ceramic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 682-690. DOI: 10.6052/0459-1879-2010-4-lxxb2009-228
    [7]THE EFFECTIVE FRACTURE TOUGHNESS OF MICROCRACKED BODIES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 109-115. DOI: 10.6052/0459-1879-1998-1-1995-105
    [8]A MICRO-MODEL OF DUCTILE FRACTUKE AND IT’S APPLICAION TO CONSTRAINED FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 120-124. DOI: 10.6052/0459-1879-1995-S-1995-513
    [9]FRACTAL KINEMAIICS OF CRACK PROPAGAtiON IN BRITTLE MAtERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 757-762. DOI: 10.6052/0459-1879-1994-6-1995-606
  • Cited by

    Periodical cited type(8)

    1. 王鹏欢,汤名锴,王森林. 激光选区熔化成形多层级Gyroid点阵结构的力学性能研究. 力学学报. 2025(01): 148-161 . 本站查看
    2. 李瑶,高慧贤,李芹芹,王子超,罗文忠. TC4合金断裂韧性与冲击韧性的关系研究. 兵器材料科学与工程. 2023(03): 109-115 .
    3. 沈琪 ,白玉 ,范世超 ,郝海 . 热处理工艺对H11热作模具钢力学性能的影响. 热加工工艺. 2022(12): 89-92+96 .
    4. 崔光顺,包陈,李一磊,孙建华,杜开开. 加载速率和几何尺寸对国产A508-Ⅲ钢断裂行为影响的实验研究. 力学学报. 2022(07): 1970-1981 . 本站查看
    5. 徐志鹏,刘晟,万宏凤. 采煤机调高千斤顶失效分析及预防措施. 机电产品开发与创新. 2022(06): 88-90 .
    6. 李朋洲,李一磊,姚迪,罗家成,孙磊,乔红威. 主管道材料高温力学性能研究. 核动力工程. 2022(06): 139-145 .
    7. 于培师,赵军华,郭万林. 三维损伤容限设计:离面约束理论与疲劳断裂准则. 机械工程学报. 2021(16): 87-105 .
    8. 何沐阳,韦家祥,尹佳静,隆霞,周琛. 基于J-C模型的11MnNiMo钢本构参数标定及验证. 应用科技. 2021(06): 121-126 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1576) PDF downloads (168) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return