EI、Scopus 收录
中文核心期刊
Gu Wei, Zhang Bo, Ding Hu, Chen Liqun. NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142. DOI: 10.6052/0459-1879-20-060
Citation: Gu Wei, Zhang Bo, Ding Hu, Chen Liqun. NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142. DOI: 10.6052/0459-1879-20-060

NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE

  • Received Date: March 01, 2020
  • In the engineering practice, the rotating speed of turbine blade is not a constant value during many application scenarios, for example, during the start-up, the speed varying and the outage of engines, the input and output power of the rotor are out of balance, usually along with the generation of torsional vibration and resulting in velocity pulse. At the same time, the pre-deformation of the blades, caused by some factors including service environment and the installation imperfection, is often inevitable. Nonlinear dynamic behavior of pre-deformed blade with the varying rotating speed is studied in this paper. Considering the rotating speed is consisted of a constant speed and small perturbation, the dynamic governing equation is obtained by Lagrange principle. The partial differential equation is transformed into ordinary differential equation by using assumed mode method. For the sake of generality, a set of dimensionless parameters are introduced. The method of multiple scales is exploited to solve the excitation system. The average equation is derived in the case of 2:1 internal resonance. After that the steady-state response of the system is obtained. The influences of rotating speed, temperature gradient and damping on the dynamic behavior of the blade are studied in detail. Meanwhile, we clarify the effects of cubic nonlinear terms on the steady state response of the blade in the case of the 2:1 internal resonance. The original dynamic equation is integrated numerically in forward and backward frequency sweep direction to observe the jump phenomenon, and to verify the analytical solution. The results show that the changes of parameters have different influences on the dynamic behavior of blade. In the case of the 2:1 internal resonance, the cubic nonlinear terms have little influence on the dynamic response of the system. The analytical solutions are in good agreement with the numerical solutions.
  • [1] Swaminathan M, Rao JS. Vibrations of rotating,pretwisted and tapered blades. Mechanism and Machine Theory, 1977,12:331-337
    [2] Yang HD, Yang RM. Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA Journal, 1981,19(11):1459-1466
    [3] Yoo HH, Shin SH. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998,212(5):807-828
    [4] Yoo HH, Kwak JY, Chung J. Vibration analysis of rotating pre-twisted blades with a concentrated mass. Journal of Sound and Vibration, 2001,240(5):891-908
    [5] Yoo HH, Park JH, Park J. Vibration analysis of rotating pre-twisted blades. Computers & Structures, 2001,79(19):1811-1819
    [6] 蔡国平, 洪嘉振. 非惯性系下柔性悬臂梁的振动主动控制. 力学学报, 2003,35(6):744-751
    [6] ( Cai Guoping, Hong Jiazhen. Active vibration control of a cantilever beam in non-inertial system. Chinese Journal of Theoretical and Applied Mechanics, 2003,35(6):744-751 (in Chinese))
    [7] Yang JB, Jiang LJ, Chen DCH. Dynamic modelling and control of a rotating euler-bernoulli beam. Journal of Sound and Vibration, 2004,274(3-5):863-875
    [8] 姜静, 韩广才. 考虑弯扭耦合旋转叶片的动力学分析. 佳木斯大学学报 (自然科学版), 2011,29(4):560-563
    [8] ( Jiang Jing, Han Guangcai. Dynamic analysis of rotating blade considering the couple of bending and torsion, Journal of Jiamusi University, 2011,29(4):560-563 (in Chinese))
    [9] Inoue T, Ishida Y, Kiyohara T. Nonlinear vibration analysis of the wind turbine blade (occurrence of the superharmonic resonance in the out of plane vibration of the elastic blade). Journal of Vibration and Acoustics-Transactions of the ASME, 2012,134(3):031009
    [10] Ramakrishnan V, Feeny BF. In-plane nonlinear dynamics of wind turbine Blades// Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2011, Vol 1, Pts A and B, 2012: 761-769
    [11] Ramakrishnan V, Feeny BF. Resonances of a forced mathieu equation with reference to wind turbine blades. Journal of Vibration and Acoustics-Transactions of the Asme, 2012,134(6):064501
    [12] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    [12] ( Li Guoqiang, Zhang Weiguo, Chen Li, et al, Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765 (in Chinese))
    [13] 赵国威, 吴志刚. 应变能中耦合项对旋转悬臂梁振动频率的影响. 力学学报, 2015,47(2):362-366
    [13] ( Zhao Guowei, Wu Zhigang. Effects of coupling terms in strain energy on frequency of a rotating cantilever beam. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):362-366 (in Chinese))
    [14] 杨鄂川, 李映辉, 赵翔 等. 含旋转运动效应裂纹梁横向振动特性的研究. 应用力学学报, 2017,34(6):1160-1165
    [14] ( Yang Echuan, Li Yinghui, Zhang Xiang, et al. Study on transverse vibration characteristics of cracked beams with rotating motion effect. Chinese Journal of Applied Mechanics, 2017,34(6):1160-1165 (in Chinese))
    [15] Oh Y, Yoo HH. Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion. Journal of Sound and Vibration, 2018,431:20-39
    [16] Tian JJ, Su JP, Zhou K, et al. A modified variational method for nonlinear vibration analysis of rotating beams including coriolis effects. Journal of Sound and Vibration, 2018,426:258-277
    [17] 李炳强, 马辉, 曾劲 等. 转子-叶片系统非线性振动和动态稳定性分析. 振动与冲击, 2019,38(6):15-22
    [17] ( Li Bingqiang, Ma Hui, Ceng Jin, et al, Nonlinear vibration and dynamic stability analysis of a rotor-blade system. Journal of Vibration and Shock, 2019,38(6):15-22 (in Chinese))
    [18] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    [18] ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    [19] Kammer DC, Jr Schlack AL. Effects of nonconstant spin rate on the vibration of a rotating beam. Journal of Applied Mechanics, Transactions ASME, 1987,54(2):305-310
    [20] Young TH. Dynamic resppnse of a pretwisted, tapered beam with non-constant rotating speed. Journal of Sound and Vibration, 1991,150(3):435-446
    [21] Yang SM, Tsao SM. Dynamics of a pretwisted blade under nonconstant rotating speed. Computers & Structures, 1997,62(4):643-651
    [22] 张伟, 冯景, 姚明辉 等. 水平轴风机旋转叶片非线性动力学模型的建立及分析. 科技导报, 2010,28(5):40-44
    [22] ( Zhang Wei, Feng Jing, Yao Minghui, et al. Model establishment and nonlinear dynamic analysis of the rotating horizontal axis wind turbine blade. Review of Science and Technology, 2010,28(5):40-44 (in Chinese))
    [23] Yao MH, Chen YP, Zhang W. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dynamics, 2011,68(4):487-504
    [24] Yao MH, Zhang W, Chen YP. Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mechanica, 2014,225(12):3483-3510
    [25] Georgiades F. Nonlinear dynamics of a spinning shaft with non-constant rotating speed. Nonlinear Dynamics, 2017,93(1):89-118
    [26] 张伟, 袁双, 郭翔鹰. 变截面旋转叶片的非线性动力学研究. 动力学与控制学报, 2018,16(4):309-316
    [26] ( Zhang Wei, Yuan Shuang, Guo Xiangying. Noninear dynamics of rotating blades with variable cross section. Journal of Dynamics and Control, 2018,16(4):309-316 (in Chinese))
    [27] Hu Y, Zhao Y, Wang N, et al. Dynamic analysis of varying speed rotating pretwisted structures using refined beam theories. International Journal of Solids and Structures, 2020,185:292-310
    [28] Zhang B, Li YM. Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dynamics, 2016,86(1):459-478
    [29] Kang D, Wang YL, Zhong JJ, et al. Pre-deformation method for manufactured compressor blade based on load incremental approach. International Journal of Turbo & Jet-Engines, 2017,36(4):1-7
    [30] Zhang B, Zhang YL, Yang XD, et al. Saturation and stability in internal resonance of a rotating blade under thermal gradient. Journal of Sound and Vibration, 2019,440:34-50
    [31] Rao SS. Vibration of Continuous Systems, 2nd ed., Hoboken, NJ, USA: John Wiley & Sons Ltd, 2019: 323-398
    [32] Zhang B, Ding H, Chen LQ. Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure. Nonlinear Dynamics, 2019,98(4):2531-2549
    [33] 张登博, 唐有绮, 陈立群. 非齐次边界条件下轴向运动梁的非线性振动. 力学学报, 2019,51(1):218-227
    [33] ( Zhang Dengbo, Tang Youqi, Chen Liqun. Nonlinear vibration of axially moving beams with nonhomogeneous boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):218-227 (in Chinese))
    [34] Carnegie W, Thomas J. The coupled bending—bending vibration of pretwisted tapered blading. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1972,94(1):255-266
  • Related Articles

    [1]Xing Jingdian, Li Xianghong, Shen Yongjun. VIBRATION REDUCTION MECHANISM OF NONLINEAR ZENER SYSTEM UNDER COMBINED PARAMETRIC AND EXTERNAL EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2393-2404. DOI: 10.6052/0459-1879-23-294
    [2]Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058
    [3]Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
    [4]Jianjun Wang, Qinkai Han, Qihan Li. Spectral components and their distributions of the response for parametric vibration system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 534-540. DOI: 10.6052/0459-1879-2010-3-2008-707
    [5]Kexiang Wei, Guang Meng. Parametric vibration of a rotating er sandwich beam with periodically varying velocity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 273-280. DOI: 10.6052/0459-1879-2008-2-2007-252
    [6]Study on the international resonance of nonlinear vibration of axially moving beams[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 57-63. DOI: 10.6052/0459-1879-2005-1-2003-532
    [7]Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 internal resonance[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 443-454. DOI: 10.6052/0459-1879-2004-4-2003-369
    [8]PRINCIPAL RESPONSE OF DUFFING OSCILLATOR TO COMBINED DETERMINISTIC AND NARROW BAND RANDOM PARAMETERIC EXCITATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 178-185. DOI: 10.6052/0459-1879-1998-2-1995-114
    [9]TRIPLE RESONANCES OF TORSIONAL VIBRATION OF A SHAFTING SYSTEM SIMULATING A GENERATOR SET ROTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 733-739. DOI: 10.6052/0459-1879-1997-6-1995-291
    [10]INVESTIGATION ON DYNAMICAL BIFURCATIONS OF A NONLINEAR PARAMETRIC EXCITATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(2): 169-175. DOI: 10.6052/0459-1879-1993-2-1995-628
  • Cited by

    Periodical cited type(10)

    1. 苑高飞,冯志壮,谷晓宁,邢龙涛,樊枫. 面内碰摩作用下带冠叶片组合共振动力学特性研究. 装备环境工程. 2025(01): 69-80 .
    2. 宋洋,张博,陈旭东,丁虎,陈立群. 二阶主共振下旋转叶片振动抑制器稳定性研究. 振动与冲击. 2023(16): 262-268+277 .
    3. 严巧赟. 移动荷载作用下非线性基础梁内共振分析. 动力学与控制学报. 2023(09): 41-49 .
    4. 刘鹏飞,朱凌云,苟向锋,石建飞,金国光. 计及短周期误差的直齿轮副近周期运动及其辨识. 力学学报. 2022(03): 786-799 . 本站查看
    5. 万洪林,李向红,申永军,王艳丽. 两尺度Duffing系统的动力吸振器减振研究. 力学学报. 2022(11): 3136-3146 . 本站查看
    6. 黄建亮,王腾,陈树辉. 含外激励van der Pol-Mathieu方程的非线性动力学特性分析. 力学学报. 2021(02): 496-510 . 本站查看
    7. 张博,丁虎,陈立群. 基于压电纤维复合材料的旋转叶片主动控制. 力学学报. 2021(04): 1093-1102 . 本站查看
    8. 林恒辉,赵珧冰. 温度变化对悬索非线性内共振响应特性影响. 振动与冲击. 2021(08): 165-172 .
    9. 何贵勤,曹登庆,陈帅,黄文虎. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报. 2021(08): 2312-2322 . 本站查看
    10. 郭梓龙,王琳,倪樵,贾青青,杨文正. 接地惯容式减振器对悬臂输流管稳定性和动态响应的影响研究. 力学学报. 2021(06): 1769-1780 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (2010) PDF downloads (227) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return