EI、Scopus 收录
中文核心期刊
Lü Yang, Fang Hongbin, Xu Jian, Ma Jianmin, Wang Qining, Zhang Xiaoxu. DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048
Citation: Lü Yang, Fang Hongbin, Xu Jian, Ma Jianmin, Wang Qining, Zhang Xiaoxu. DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048

DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE

  • Received Date: February 14, 2020
  • The four-bar linkage prosthetic knee has attracted widespread attention in the study of lower limb prosthesis because it shows a better bionic feature and a higher locomotive safety than the uniaxial joint prosthetic knee. Based on a real four-bar linkage prosthetic knee, this paper mainly studies the strongly nonlinear effects, e.g. the foot-ground interaction force and the unilateral constraint force of knee joint, on the gait of the lower limb prosthesis. For this purpose, firstly, the Kelvin-Voigt contact model is adopted to represent the effect of foot-ground contact force and the unilateral constraint force of the knee joint. The Coulomb model is employed to describe the effect of foot-ground friction force. Then, the Lagrange equations of the first kind are applied to model the dynamics of the prosthesis. Based on this model, the measured hip joint motion of an able-bodied testee is used as the driven signal and the gait characteristics analysis is conducted numerically. The numerical results reveal that if the stiffness of the hydraulic cylinder, which supports the motion of the prosthetic knee joint, is small, the strongly nonlinear effects may lead to the remarkable subharmonic response, which further results in the so-called gait inconformity. Further research shows that the subharmonic response can be avoided by lifting the hip joint, which provides a new insight into the compensatory mechanism such as lifting the hip for the amputee walking from the view of mechanics. In order to evaluate the consistence of the gaits between the prosthesis and the able-bodied testee, this paper further defines the correlation coefficient and analyzes the effects of the hydraulic cylinder's stiffness and damping on this coefficient. The results show that the correlation coefficient of the gaits can be better than 0.9 with proper stiffness and damping design. This discovery provides a solid foundation for further optimization of the four-bar linkage prosthesis.
  • [1] 第二次全国残疾人抽样调查主要数据公报(第二号). 时政文献辑览, 2008: 439-442
    [2] Price MA, Philipp B, Frank CS. Design optimization in lower limb prostheses: A review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019,27(8):1574-1588
    [3] Breakey JW, Marquette SH. Beyond the Four-Bar Knee. JPO Journal of Prosthetics and Orthotics, 1998,10(3).
    [4] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019,51(4):1110-1121
    [4] ( Qiu Hai, Fang Hongbin, Xu Jian. Nonlinear characteristics of a multi-stable series Origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1110-1121 (in Chinese))
    [5] 尚昆, 沈力行, 赵改平 等. 四连杆膝关节运动学性能仿真软件的实现. 医用生物力学, 2009,24(2):107-111
    [5] ( Shang Kun, Shen Lixing, Zhao Gaiping, et al. Realization of kinematics simulation software for four-bar artificial limb knees. Journal of Medical Biomechanics, 2009,24(2):107-111 (in Chinese))
    [6] 徐磊. 基于磁流变效应的四连杆假肢膝关节及其构成的下肢假肢的研究. [博士论文]. 重庆:重庆大学, 2016
    [6] ( Xu Lei. Magnetroheological effect based four-bar linkage prosthetic knee and the correspondingly constituted lower limb prosthesis. [PhD Thesis]. Chongqing: Chongqing University, 2016 (in Chinese))
    [7] 吴波. 基于磁流变阻尼器的动力型智能假肢动力特性分析. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2015
    [7] ( Wu Bo. Dynamic characteristics analysis of active intelligent prosthesis used magnetorheological damper. [Master Thesis]. Harbin: Harbin Institute of Technology, 2015 (in Chinese))
    [8] Quintero D, Martin AE, Gregg RD. Toward unified control of a powered prosthetic leg: A simulation study. IEEE Trans Control Syst Technol, 2018,26(1):305-312
    [9] Huang Y, Wang Q. Torque-stiffness-controlled dynamic walking: analysis of the behaviors of bipeds with both adaptable joint torque and joint stiffness. IEEE Robotics & Automation Magazine, 2016,23(1):71-82
    [10] 葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法. 力学学报, 2018,50(4):871-879
    [10] ( Ge Yimin, Yuan Haihui, Gan Chunbiao. Control method of an underactuated biped robot based on gait transition. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):871-879 (in Chinese))
    [11] Skrinjar L, Slavi? J, Bolte?ar M. A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 2018,145(9):171-187
    [12] Hu SW, Guo XL. A dissipative contact force model for impact analysis in multibody dynamics. Multibody System Dynamics, 2015,35(2):131-151
    [13] Carvalho AS, Jorge MM. Exact restitution and generalizations for the Hunt-Crossley contact model. Mechanism and Machine Theory, 2019,139:174-194
    [14] Li B, Wang SM, Makis V, et al. Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017: 095440621771027
    [15] Goldsmith W, Frasier JT. Impact: The theory and physical behavior of colliding solids. Journal of Applied Mechanics, 1961,28(4):639
    [16] Mostaghel N, Davis T. Representations of coulomb friction for dynamic analysis. Earthquake Engineering & Structural Dynamics, 1997,26(5):541-548
    [17] Marton L, Lantos B. Modeling, identification, and compensation of stick-slip friction. IEEE Transactions on Industrial Electronics, 2007,54(1):511-521
    [18] Liu L, Wu Z. A new identification method of the Stribeck friction model based on limit cycles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014,228(15):2678-2683
    [19] Kamenar E, Zelenika S. Nanometric positioning accuracy in the presence of presliding and sliding friction: Modelling, identification and compensation. Mechanics Based Design of Structures and Machines, 2016,45(1):111-126
    [20] Johanastrom K, Canudas-De-Wit C. Revisiting the LuGre friction model. IEEE Control Systems, 2009,28(6):101-114
    [21] Wang H, Sun Y, Tian Y. Mechanical structure design and robust adaptive integral backstepping cooperative control of a new lower back exoskeleton. Studies in Informatics and Control, 2019,28(2):133-146
    [22] Ikhouane F, Ma?osa V, Pujol G. Minor loops of the Dahl and LuGre models. Applied Mathematical Modelling, 2020,77:1679-1690
    [23] 王晓军, 吕敬, 王琪. 含摩擦滑移铰平面多刚体系统动力学的数值算法. 力学学报, 2019,51(1):209-217
    [23] ( Wang XiaoJun, Lü Jing, Wang Qi. A numerical method for dynamics of planar multi-rigid-body system with frictional translational joints based on LuGre friction model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):209-217 (in Chinese))
    [24] Nouri BMY. Friction identification in mechatronic systems. ISA Transactions, 2004,43(2):205-216
    [25] Tjahjowidodo T, Al-Bender F, Brussel HV, et al. Friction characterization and compensation in electro-mechanical systems. Journal of Sound and Vibration, 2007,308(3-5):632-646
    [26] Sun YH, Chen T, Wu CQ, et al. A comprehensive experimental setup for identification of friction model parameters. Mechanism and Machine Theory, 2016,100:338-357
    [27] Zhang X, Xu J, Ji J. Modelling and tuning for a time-delayed vibration absorber with friction. Journal of Sound and Vibration, 2018,424:137-157
    [28] 王琪, 庄方方, 郭易圆 等. 非光滑多体系统动力学数值算法的研究进展. 力学进展, 2013,43(1):101-111
    [28] ( Wang Qi, Zhuang Fangfang, Guo Yiyuan, et al. Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Advances in Mechanics, 2013,43(1):101-111 (in Chinese))
    [29] Zheng X, Wang Q. LCP method for a planar passive dynamic walker based on an event-driven scheme. Acta Mechanica Sinica, 2018,34(3):578-588
    [30] 郑鹏, 王琪, 吕敬 等. 摩擦与滚阻对被动行走器步态影响的研究. 力学学报, 2020,52(1):162-170
    [30] ( Zheng Peng, Wang Qi, Lü Jing, et al. Study on the influence of friction and rolling resistance on the gait of passive dynamic walker. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):162-170 (in Chinese))
    [31] 段文杰, 王琪, 王天舒. 圆弧足被动行走器非光滑动力学仿真研究. 力学学报, 2011,43(4):765-774
    [31] ( Duan Wenjie, Wang Qi, Wang Tianshu. Simulation research of a passive dynamic walker with round feet based on Non-smooth method. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(4):765-774 (in Chinese))
    [32] Ojeda J, Mayo J. A procedure to estimate normal and friction contact parameters in the stance phase of the human gait. Computer Methods in Biomechanics & Biomedical Engineering, 2019: 1-13
    [33] Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research, 1990,8(3):383-392
  • Related Articles

    [1]Bao Yumeng, Rao Xiaobo, Ding Shunliang, Gao Jianshe. RESEARCH ON MULTISTABILITY OF GAITS IN THE PASSIVE WALKING ROBOT WITH ROUND FEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1784-1795. DOI: 10.6052/0459-1879-23-545
    [2]Yang Shengli, Wu Zhigang, Meng Deshan, Li Qingjun, Shao Ke. COUPLED DYNAMICS AND GAIT OPTIMIZATION OF THE SPATIAL STRUCTURE OF ROBOT WALKING ASSEMBLY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1548-1558. DOI: 10.6052/0459-1879-23-135
    [3]Zhang Lei, Zhang Yan, Ding Zhe. ADJOINT SENSITIVITY METHODS FOR TRANSIENT RESPONSES OF VISCOUSLY DAMPED SYSTEMS AND THEIR CONSISTENCY ISSUES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1113-1124. DOI: 10.6052/0459-1879-21-562
    [4]Zou Hua, Wu Qifeng, Sun Shouguang. RESEARCH ON LOAD TEST SPECTRUM OF EMU CAR BOGIES BASED ON DAMAGE CONSISTENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 115-125. DOI: 10.6052/0459-1879-20-214
    [5]Zheng Peng, Wang Qi, Lü Jing, Zheng Xudong. STUDY ON THE INFLUENCE OF FRICTION AND ROLLING RESISTANCE ON THE GAIT OF PASSIVE DYNAMIC WALKER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162-170. DOI: 10.6052/0459-1879-19-216
    [6]Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. DOI: 10.6052/0459-1879-18-049
    [7]Shao Yulong, Duan Qinglin, Gao Xin, Li Xikui, Zhang Hongwu. ADAPTIVE CONSISTENT HIGH ORDER ELEMENT-FREE GALERKIN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116. DOI: 10.6052/0459-1879-16-252
    [8]Jianying Wu. On thermodynamically consistent anisotropic unilateral damage model for concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 696-707. DOI: 10.6052/0459-1879-2009-5-2008-109
    [9]一种描述形状记忆合金拟弹性变形行为的本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 201-210. DOI: 10.6052/0459-1879-1991-2-1995-827
    [10]A CONSISTENT ALGORITHM OF NEWTON ITERATION AND ITS APPLICATION IN PLATE BENDING FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 579-588. DOI: 10.6052/0459-1879-1990-5-1995-987
  • Cited by

    Periodical cited type(11)

    1. 廖理,罗天洪,马翔宇,梁爽,崔庭琼,刘晨杰. 气动肌肉变瞬心外骨骼膝关节设计与研究. 机床与液压. 2025(02): 106-112 .
    2. 李月,姜杰,蒋刚,张颢曦,郝兴安. 足式机器人足-地力学模型及实验仿真研究综述. 机械. 2024(10): 1-15 .
    3. 张意彬,李剑峰,喻洪流. 一种智能膝关节假肢及其步态对称性评价. 中国康复理论与实践. 2023(04): 402-407 .
    4. 陈长龙,汪晓铭,张哲文,黎林荣,孙洁,孟巧玲,喻洪流,郑宏宇. 一种结合健侧小腿步态信息的膝关节假肢控制方法. 生物医学工程学进展. 2022(02): 72-75 .
    5. 高钰清 ,靳葳 ,徐鉴 ,方虹斌 . 踝关节外骨骼人机耦合动力学与助力性能分析. 力学学报. 2022(12): 3496-3512 . 本站查看
    6. 张意彬,吕杰,喻洪流. 一种智能膝关节假肢及其控制算法研究. 现代仪器与医疗. 2022(06): 19-27 .
    7. 祝世兴,杨丽昆,魏戬,祝恒佳. 基于改进Bingham模型的磁流变阻尼器力学建模及试验研究. 重庆理工大学学报(自然科学). 2021(04): 254-264 .
    8. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 .
    9. 汪斌,杨黎业,张明,舒星,徐巧. 直捻机自动上纱系统的开发. 纺织科学研究. 2021(06): 41-43 .
    10. 张佳俊,张舒,徐鉴. 下肢康复外骨骼人机耦合动力学建模与控制. 动力学与控制学报. 2021(04): 55-63 .
    11. 王存金,唐景明,沈冬华,王兴松. 基于耦合摆模型的人体行走能耗分析. 中国科学:技术科学. 2021(09): 1053-1065 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (2950) PDF downloads (333) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return