EI、Scopus 收录
中文核心期刊
Volume 52 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
Cheng Pengda, Zhu Xinguang, Feng Chun, Wang Xiaoliang. NUMERICAL SIMULATION ON THE RELEASE OF NON-ADSORPTION POLLUTANTS DURING THE SEDIMENT RESUSPENDED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 689-697. doi: 10.6052/0459-1879-20-047
Citation: Cheng Pengda, Zhu Xinguang, Feng Chun, Wang Xiaoliang. NUMERICAL SIMULATION ON THE RELEASE OF NON-ADSORPTION POLLUTANTS DURING THE SEDIMENT RESUSPENDED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 689-697. doi: 10.6052/0459-1879-20-047

NUMERICAL SIMULATION ON THE RELEASE OF NON-ADSORPTION POLLUTANTS DURING THE SEDIMENT RESUSPENDED

doi: 10.6052/0459-1879-20-047
  • Received Date: 2020-02-15
  • Publish Date: 2020-06-10
  • In environmental hydrodynamics, the release of pollutants from sediments is one of the main problems. Under the condition of hydrodynamics, the resuspension of polluted sediment makes a large number of pollutants released again, resulting in the secondary pollution of water body. Based on a large number of experimental data provided by water channel experiments, a coupled mechanical model of overlying water body, sediment and pollutants is established in this paper. The process of sediment incipient motion and pollutant release are numerically simulated under different velocity of overlying water. The quantitative relationships among velocity, particle volume fraction, pollutant concentration, turbulent kinetic energy and time are obtained by analyzing the relationship between flow field characteristics and pollutant concentration distribution. The results show that the pollutants release process of sediment resuspended is a coupling process composed of overlying water, sediment and pollutants. When the sediment particles are resuspended into the overlying water body, the flow characteristics of overlying water and the release of pollutants are affected rapidly. For the non-adsorption pollutants, the complex characteristics of flow field are the main factors affecting the release of pollutants from resuspended sediment. When the flow field characteristics ($Re$) change, the contribution of convection diffusion and turbulent diffusion is different to pollutant release process. The coupling model of overlying water body, sediment and pollutants is established, and the quantitative relationship between hydrodynamic conditions and sediment pollutant release is studied, which can provide support for the construction of water pollution model in lake and reservoir area.

     

  • loading
  • Zhang C, Yu ZG, Zeng GM, et al.Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 2014, 73(4): 270-281
    王道增, 林卫青. 苏州河综合调水与水环境治理研究.力学与实践, 2005, 27(5): 1-12
    (Wang Daozeng, Lin Weiqin.Study of flow augmentation and water environment rehabilitation for Suzhou Greek. Mechanics in Engineering, 2005, 27(5): 1-12 (in Chinese))
    林卫青, 卢士强, 陈义中. 应用生态动力学模型评价上海淀山湖富营养化控制方案. 上海环境科学, 2010, 29(1): 1-10
    (Lin Weiqin, Lu Shiqiang, Chen Yizhong.An application of ecodynamic model in evaluating eutrophication control measures for Dianshan Lake in Shanghai. Shanghai Environmental Science, 2010, 29(1): 1-10 (in Chinese))
    禹雪中, 钟德钰, 李锦秀等. 水环境中泥沙作用研究进展及分析. 泥沙研究, 2004(6): 75-81
    (Yu Xuezhong, Zhong Deyu, Li Jinxiu.Review of studies on sediment in water environment. Journal of Sediment Research, 2004(6): 75-81 (in Chinese))
    Cheng PD, Zhu HW, Wang DZ, et al.Numerical research for contaminant release from un-suspended bottom sediment under different hydrodynamic conditions. Journal of Hydrodynamics, 2013, 25(4): 620-627
    Cheng PD, Zhu HW, Wang DZ, et al.Sediment rarefaction resuspension and contaminant release under tidal currents. Journal of Hydrodynamics, 2014, 26(5): 827-834
    Zhu HW, Cheng PD, Wang DZ, et al.Empirical model for estimating vertical concentration profiles of re-suspended, sediment-associated contaminants. Acta Mechanica Sinica, 2017, 33(5): 846-854
    Chatelain M, Guizien K.Modelling coupled turbulence -- Dissolved oxygen dynamics near the sediment--water interface under wind waves and sea swell. Water Research, 2010, 44(5): 1361-1372
    朱广伟, 高光, 秦伯强等. 浅水湖泊沉积物中磷的地球化学特征. 水科学进展, 2003, 14(6): 714-719
    (Zhu Guangwei, Gao Guang, Qin Boqiang, et al.Geochemical characteristic of phosphorus in sediment of a large shallow lake. Advances in Water Science, 2003, 14(6): 714-719 (in Chinese))
    Cheng PD, Zhu HW, Wang DZ, et al.Transport mechanisms of contaminants released from fine sediment in rivers. Acta Mechanica Sinica, 2015, 31(6): 791-798
    李彬, 张坤, 钟宝昌等. 底泥污染物释放水动力特性实验研究. 水动力学研究和进展, A 辑, 2008, 23(2): 126-133
    (Li Bin, Zhang Kun, Zhong Baochang, et al.An experimental study on release of pollutants from sediment under hydrodynamic conditions. Chinese Journal of Hydrodynamics, 2008, 23(2): 126-133 (in Chinese))
    朱红伟, 张坤, 王道增等. 泥沙颗粒和孔隙水在底泥再悬浮污染物中的作用. 水动力学研究与进展, 2011, 26(5): 631-641
    (Zhu Hongwei, Zhang Kun, Wang Daozeng, et al.Effects of particles and pore water in release of pollutants due to sediment resuspension. Journal of Hydrodynamics, 2011, 26(5): 631-641 (in Chinese))
    张磊, 钟德钰, 吴保生等. 明渠中悬移质的弥散-对流方程及悬浮机理. 力学学报, 2013, 45(1): 83-93
    (Zhang Lei, Zhong Deyu, Wu Baosheng, et al.The convection-dispersion equation and the mechanism of suspension in turbulent open-channels. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 83-93 (in Chinese))
    白静,方红卫,何国建等.细颗粒泥沙净冲刷和输移的大涡模拟研究.力学学报, 2017, 49(1): 65-74
    (Bai Jing, Fang Hongwei, He Guojian, et al.Numerical simulation of erosion and transport of fine sediments by large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 65-74 (in Chinese))
    Fetters KJ, Costello DM, Hammerschmidt CR, et al.Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments. Environmental Toxicology & Chemistry, 2016, 35(3): 676-686
    Matisoff G, Watson SB, Guo J, et al.Sediment and nutrient distribution and resuspension in Lake Winnipeg. Science of the Total Environment, 2017, 575: 173-186
    Lepage H, Launay M, Coz JL, et al.Impact of dam flushing operations on sediment dynamics and quality in the upper Rhône River, France. Journal of Environmental Management, 2020, 225: 109886
    Fang H, Huang L, Wang J, et al.Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. Journal of Hazardous Materials, 2016, 302: 447-457
    Stickel JJ, Powell RL.Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics, 2005, 37(1): 129-149
    Hinch EJ.The measurement of suspension rheology. Journal of Fluid Mechanics, 2011, 686: 1-4
    Launder BE, Spalding DB.The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289
    Maron SH, Pierce PE.Application of ree-eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 1956, 11(1): 80-95
    Quemada D.Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheologica Acta, 1977, 16(1): 82-94
    Mendoza CI, Santamari A, Holek I.The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model. The Journal of Chemical Physics, 2009, 130(4): 044904
    Shewan HM, Stokes JR.Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. Journal of Non-Newtonian Fluid Mechanics, 2015, 222: 72-81
    章本照. 流体力学中的有限元方法. 北京: 机械工业出版社, 1984
    (Zhang Benzhao.The Finite Element Method in Fluid Dynamics. Beijing: China Machine Press, 1984 (in Chinese))
    Ignat L, Pelletier D, Ilinca F.A universal formulation of two-equation models for adaptive computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 2000, 189(4): 1119-1139
    Hughes TJR, Franca LP, Hulbert GM.A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, 1989, 73(2): 173-189
    Elman HC, Silvester DJ, Wathen AJ.Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, New York: Oxford University Press, USA, 2005
    Cotter CJ, Ham DA, Pain CC, et al.LBB stability of a mixed Galerkin finite element pair for fluid flow simulations. Journal of Computational Physics, 2009, 228(2): 336-348
    Chorin AJ.Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968, 22(104): 745-762
    Gresho PM, Sani RL.Incompressible Flow and the Finite Element Method, Vol.2: Isothermal Laminar Flow. Chichester, UK: Wiley, 2000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1037) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return