EI、Scopus 收录
中文核心期刊
Jia Ran, Zhao Guiping. PROGRESS IN CONSTITUTIVE BEHAVIOR OF ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 603-622. DOI: 10.6052/0459-1879-20-020
Citation: Jia Ran, Zhao Guiping. PROGRESS IN CONSTITUTIVE BEHAVIOR OF ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 603-622. DOI: 10.6052/0459-1879-20-020

PROGRESS IN CONSTITUTIVE BEHAVIOR OF ALUMINUM FOAM

  • Received Date: January 13, 2020
  • As a typical representation in various metallic foams, the aluminum foam is a kind of new material that integrates both structural properties and functional properties. With the improvement of production technology and the development of national economy, the application of the aluminum foam is becoming deeper and wider in the fields of aerospace engineering, transportation, construction engineering, machinery manufacturing and so forth. The complex load conditions in engineering application put forward higher requirements for the accuracy and practicability of the aluminum foam constitutive models. A great deal of experimental research and finite element numerical analysis on aluminum foam have been carried out by scholars both at home and abroad. With the proposal, verification and modification of various research constitutive models and numerical constitutive models, the understanding of researchers on the mechanical properties of aluminum foam becomes deeper and deeper. First of all, the development of experimental research and finite element numerical analysis on the mechanical properties of aluminum foam is briefly summarized in this paper; after that, the research progress and the present situation of constitutive model of aluminum foam both at home and abroad are emphatically reviewed; at last, aiming at the existing problems, the development trend of foam aluminum constitutive model is discussed and prospected. The important research directions in the existing aluminum foam constitutive model system are as follows: supplementing the characteristic parameters that are required for the characterization of constitutive model; introducing the anisotropic material assumption or the transversely isotropic material assumptions into the model building system; clarifying the weight of hydrostatic compression response and uniaxial compression response in material hardening; establishing hardening models which can truly and accurately reflect the hardening process of aluminum foam, such as the kinematic hardening model; introducing the research results of strain rate effect into the constitutive model and so forth.
  • Gibson LJ, Ashby MF.Cellular Solids: Structure and Properties, 2nd edn. Cambridge: Cambridge University Press, 1997
    蒂吉斯切HP, 克雷兹特 B. 多孔泡沫金属. 北京: 化学工业出版社, 2005
    (Degischer HP, Kriszt B.Handbook of Celluar Metals. Beijing: Chemical Industry Press, 2005 (in Chinese))
    韩永生, 李建保, 魏强民. 多孔陶瓷材料应用及制备的研究进展. 材料导报, 2002, 16(3): 26-29
    (Han Yongsheng, Li Jianbao, Wei Qiangmin.Progress in the applications and fabrications of porous ceramics. Materials Review, 2002, 16(3): 26-29 (in Chinese))
    马秀宝. 泡沫聚合物保温材料的研究进展及其应用. 环境技术, 2004, 22(4): 14-17
    (Ma Xiubao.A researching progression and the application of foamed polymer insulation materials. Environmental Technology, 2004, 22(4): 14-17 (in Chinese))
    卢天健, 何德坪, 陈常青等. 超轻多孔金属材料的多功能特性及应用. 力学进展, 2006, 36(4): 517-535
    (Lu Tianjian, He Deping, Chen Changqing, et al.The multi-functionality of ultra-light porous metals and their applications. Advances in Mechanics, 2006, 36(4): 517-535 (in Chinese))
    夏元明, 张威, 崔天宁等. 金属多级类蜂窝的压溃行为研究. 力学学报, 2019, 51(3): 873-883
    (Xia Yuanming, Zhang Wei, Cui Tianming, et al.Investigation on crushing behavior of metal honeycomb-like hierarchical structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 873-883 (in Chinese))
    张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展. 力学进展, 2010, 40(2): 157-169
    (Zhang Qiancheng, Lu Tianjian, Wen Ting.Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials. Advances in Mechanics, 2010, 40(2): 157-169 (in Chinese))
    任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019, 51(3): 656-687
    (Ren Xin, Zhang Xiangyu, Xie Yimin.Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687 (in Chinese))
    荣誉. 梯度泡沫金属力学性能的Lagrangian分析. [硕士论文]. 太原: 太原理工大学, 2018
    (Rong Yu.Lagrangian Analysis for the mechanical properties of graded metallic foams. [Master Thesis]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese))
    刘培生. 泡沫金属. 长沙:中南大学出版社, 2012
    (Liu Peisheng. Metal Foams.Changsha: Central South University Press, 2012 (in Chinese))
    Lu TJ, Ong JM.Characterization of close-celled cellular aluminum alloys. Journal of Materials Science, 2001, 36(11): 2773-2786
    罗绍鸿. 考虑屈服和破坏的泡沫金属本构模型及程序实现. [硕士论文]. 广州: 华南理工大学, 2011
    (Luo Shaohong.A constitutive model for metallic foams and its numerical implementation with consideration of yielding and failure.[Master Thesis]. Guangzhou: South China University of Technology, 2011 (in Chinese))
    Miller RE.A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences, 2000, 42(4): 729-754
    时学鹏. 考虑几何不规则度的泡沫金属建模及其本构关系研究. [硕士论文]. 广州: 华南理工大学, 2014
    (Shi Xuepeng.Modeling and constitutive relationship of metallic foams considering geometric irregularity. [Master Thesis]. Guangzhou: South China University of Technology, 2014 (in Chinese))
    Shi XP, Liu SY, Nie HL, et al.Study of cell irregularity effects on the compression of closed-cell foams. International Journal of Mechanical Sciences, 2018, 135: 215-225
    Peroni L, Avalle M, Peroni M.The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 2008, 35(7): 644-658
    Harte AM, Fleck NA, Ashby MF.Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materialia, 1999, 47(8): 2511-2524
    Sugimura Y, Rabiei A, Evans AG, et al.Compression fatigue of a cellular Al alloy. Materials Science and Engineering: A, 1999, 269(1): 38-48
    Chen C, Lu TJ.A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids. International Journal of Solids and Structures, 2000, 37(52): 7769-7786
    Deshpande VS, Fleck NA.Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 2000, 48(6-7): 1253-1283
    Forest S, Blazy JS, Chastel Y, et al.Continuum modeling of strain localization phenomena in metallic foams. Journal of Materials Science, 2005, 40(22): 5903-5910
    Zhang J, Kikuchi N, Li V, et al.Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International Journal of Impact Engineering, 1998, 21(5): 369-386
    Montanini R.Measurement of strain rate sensitivity of aluminium foams for energy dissipation. International Journal of Mechanical Sciences, 2005, 47(1): 26-42
    Islam MA, Brown AD, Hazell PJ, et al.Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. International Journal of Impact Engineering, 2017, 114: 111-122
    张茂轩. 闭孔泡沫铝的动态压缩力学性能试验研究. [硕士论文]. 天津: 天津大学, 2016
    (Zhang Maoxuan.Experimental study on dynamic compressive properties of closed-cell aluminum foam. [Master Thesis]. Tianjin: Tianjin University,2016 (in Chinese))
    Ding Y, Wang S, Zheng Z, et al.Dynamic crushing of cellular materials: A unique dynamic stress--strain state curve. Mechanics of Materials, 2016, 100: 219-231
    Zheng Z, Wang C, Yu J, et al.Dynamic stress--strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114
    Zheng ZJ, Yu JL, Wang CF, et al.Dynamic crushing of cellular materials: A unified framework of plastic shock wave models. International Journal of Impact Engineering, 2013, 53(1): 29-43
    Wang LL, Yang LM, Ding YY.On the energy conservation and critical velocities for the propagation of a “steady-shock” wave in a bar made of cellular material. Acta Mechanica Sinica, 2013, 29(3): 420-428
    Tan PJ, Harrigan JJ, Reid SR.Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Metal Science Journal, 2013, 18(5): 480-488
    Main JA, Gazonas GA.Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution. International Journal of Solids & Structures, 2008, 45(7): 2297-2321
    Lopatnikov SL, Gama BA, Gillespie JW.Modeling the progressive collapse behavior of metal foams. International Journal of Impact Engineering, 2007, 34(3): 587-595
    Tan PJ, Reid SR, Harrigan JJ, et al.Dynamic compressive strength properties of aluminium foams. part II---‘shock’ theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230
    Hanssen AG, Enstock L, Langseth M.Close-range blast loading of aluminium foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618
    Reid SR, Peng C.Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570
    Wang ZH, Lin J.Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 449-454
    Kolluri M, Karthikeyan S, Ramamurty U.Effect of lateral constraint on the mechanical properties of a closed-cell Al foam: I. Experiments. Metallurgical and Materials Transactions A, 2007, 38(9): 2006-2013
    Ruan D, Lu G, Ong LS, et al.Triaxial compression of aluminium foams. Composites Science and Technology, 2007, 67(6): 1218-1234
    王二恒, 虞吉林, 王飞等. 泡沫铝材料准静态本构关系的理论和实验研究. 力学学报, 2004, 36(6): 673-679
    (Wang Erheng, Yu Jilin, Wang Fei, et al.A theoretical and experimental study on the quasi-static constitutive model of aluminum foams. Acta Mechanica Sinica, 2004, 36(6): 673-679 (in Chinese))
    王二恒. 泡沫铝和泡沫铝夹芯梁冲击力学行为研究. [博士论文]. 合肥: 中国科学技术大学, 2005
    (Wang Erheng.Impact mechanical behavior of aluminum foam and aluminum foam sandwich beams. [PhD Thesis]. Hefei: University of Science and Technology of China, 2005 (in Chinese))
    Shafiq M, Ayyagari RS, Ehaab M, et al.Multiaxial yield surface of transversely isotropic foams: Part II---Experimental. Journal of the Mechanics and Physics of Solids, 2015, 76: 224-236
    Combaz E, Bacciarini C, Charvet R, et al.Multiaxial yield behaviour of Al replicated foam. Journal of the Mechanics and Physics of Solids, 2011, 59(9): 1777-1793
    Wu Y, Qiao D, Tang L, et al.Global topology of yield surfaces of metallic foams in principal-stress space and principal-strain space studied by experiments and numerical simulations. International Journal of Mechanical Sciences, 2017, 134: 562-575
    Ashby MF, Evans A, Fleck NA, et al.Metal Foams: A Design Guide. London: Butterworth Heinemann, 2000
    Blazy JS, Marie-Louise A, Forest S, et al.Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. International Journal of Mechanical Sciences, 2004, 46(2): 217-244
    Doyoyo M, Wierzbicki T.Experimental studies on the yield behavior of ductile and brittle aluminum foams. International Journal of Plasticity, 2003, 19(8): 1195-1214
    Zhou Z, Wang Z, Zhao L, et al.Uniaxial and biaxial failure behaviors of aluminum alloy foams. Composites Part B: Engineering, 2014, 61: 340-349
    Arcan M, Hashin Z, Voloshin A.A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Experimental Mechanics, 1978, 18(4): 141-146
    崔云霄. Hopkinson杆平面压剪复合加载实验技术研究. [硕士论文]. 长沙: 国防科学技术大学, 2005
    (Cui Yuxiao.Pesearch on combined planar compression-shear techenique by using split hopkinson bars. [Master Thesis]. Changsha: National University of Defense Technology, 2005 (in Chinese))
    崔云霄, 卢芳云, 林玉亮等. 一种新的高应变率复合压剪实验技术. 实验力学, 2006, 21(5): 584-590
    (Cui Yunxiao, Lu Fangyun, Lin Yuliang, et al.A new combined compression-shear loading technique at high strain rates. Journal of Experimental Mechanics, 2006, 21(5): 584-590 (in Chinese))
    Xin S, Liu W, Chen W, et al.Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading. International Journal of Impact Engineering, 2009, 36(2): 226-234
    叶福庆. 闭孔泡沫铝的动态压剪性能研究. [硕士论文]. 西安: 西安交通大学, 2010
    (Ye Fuqing.Research on dynamic compression-shear behavior of closed-cell aluminum foam. [Master Thesis]. Xi'an: Xi'an Jiaotong University, 2010 (in Chinese))
    Zhou Z, Wang Z, Zhao L, et al.Loading rate effect on yield surface of aluminum alloy foams. Materials Science and Engineering: A, 2012, 543: 193-199
    杨宝, 汤立群, 刘逸平等. 冲击条件下泡沫铝的细观变形特征分析. 爆炸与冲击, 2012, 32(4): 399-403
    (Yang Bao, Tang Liqun, Liu Yiping, et al.Meso deformation characteristics analysis of aluminum foam under impact. Explosion and Shock Waves, 2012, 32(4): 399-403 (in Chinese))
    程洁. 多孔材料压缩变形行为及吸能性能的研究. [硕士论文]. 天津: 中国民航大学, 2016
    (Cheng Jie.Study on compression deformation behavior and energy absorption properties of porous materials. [Master Thesis]. Tianjin: Civil Aviation University of China, 2016 (in Chinese))
    Schüler P, Fischer SF, Bührig-Polaczek A, et al.Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Materials Science and Engineering: A, 2013, 587(12): 250-261
    汪敏, 胡小方, 蒋锐等. 多孔泡沫铝压缩过程中微结构演化. 实验力学, 2005, 20(3): 363-369
    (Wang Min, Hu Xiaofang, Jiang Rui, et al.Microstructure evolution of porous foamed aluminium in compression. Journal of Experimental Mechanics, 2005, 20(3): 363-369 (in Chinese))
    Alvarez P, Mendizabal A, Petite MM, et al.Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams. Materialwissenschaft Und Werkstofftechnik, 2010, 40(3): 126-132
    张健. 泡沫金属的本构关系及吸能特性. [博士论文]. 西安: 西安交通大学, 2013
    (Zhang Jian.Constitutive model and energy absorption capacity of metallic cellular materials. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2013 (in Chinese))
    Öchsner A, Mishuris G.Modelling of the multiaxial elasto-plastic behaviour of porous metals with internal gas pressure. Finite Elements in Analysis and Design, 2009, 45(2): 104-112
    Vesenjak M, Fiedler T, Ren Z, et al.Behaviour of syntactic and partial hollow sphere structures under dynamic loading. Advanced Engineering Materials, 2010, 10(3): 185-191
    范志庚. 超轻多孔材料蠕变松弛及缓冲吸能性能研究. [博士论文]. 西安: 西安交通大学, 2012
    (Fan Zhigeng.Creep, stress relaxation and energy-absorption behaviours of ultra-light cellular materials. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2012 (in Chinese))
    宋延泽, 李志强, 赵隆茂. 基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析. 爆炸与冲击, 2009, 29(1): 49-55
    (Song Yanze, Li Zhiqiang, Zhao Longmao.Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakaidecahedron model. Explosion and Shock Waves, 2009, 29(1): 49-55 (in Chinese))
    Roberts AP, Garboczi EJ.Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia, 2001, 49(2): 189-197
    Santosa S, Wierzbicki T.On the modeling of crush behavior of a closed-cell aluminum foam structure. Journal of Mechanics Physics of Solids, 1998, 46(4): 645-669
    Kim A, Tunvir K, Jeong GD, et al.A multi-cell FE-model for compressive behaviour analysis of heterogeneous Al-alloy foam. Modelling & Simulation in Materials Science & Engineering, 2006, 14(14): 933-945
    Czekanski A, Attia MS, Meguid SA, et al.On the use of a new cell to model geometric asymmetry of metallic foams. Finite Elements in Analysis & Design, 2005, 41(13): 1327-1340
    Czekanski A, Elbestawi MA, Meguid SA.On the FE modeling of closed-cell aluminum foam. International Journal of Mechanics & Materials in Design, 2005, 2(1-2): 23-34
    Gagliardi F, Napoli LD, Filice L, et al.A comparison among FE models to simulate metallic foams forming -- an experimental validation. Materials & Design, 2009, 30(4): 1282-1287
    Song Y, Wang Z, Zhao L, et al.Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Materials & Design, 2010, 31(9): 4281-4289
    Jeon I, Asahina T, Kang KJ, et al.Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mechanics of Materials, 2010, 42(3): 227-236
    王鹰宇. Abaqus分析用户手册材料卷. 北京: 机械工业出版社, 2018
    (Wang Yuying.Abaqus Analysis User's Guide. Materials volume. Beijing: China Machine Press, 2018 (in Chinese))
    黄东梅. 闭孔泡沫材料几何建模及其应用研究. [硕士论文]. 秦皇岛: 燕山大学, 2014
    (Huang Dongmei.Research on geometry modeling for closed cell foam material and its application. [Master Thesis]. Qinhuangdao: Yanshan University, 2014 (in Chinese))
    Grenestedt JL, Bassinet F.Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids. International Journal of Mechanical Sciences, 1998, 42(7): 1327-1338
    Youssef S, Maire E, Gaertner R.Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Materialia, 2005, 53(3): 719-730
    Bardenhagen SG, Brydon AD, Guikey JE, et al.Insight into the physics of foam densification via numerical simulation. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 597-617
    Brydon AD, Bardenhagen SG, Miller EA, et al.Simulation of the densification of real open-celled foam microstructures. Journal of the Mechanics and Physics of Solids, 2010, 53(12): 2638-2660
    Demiray S, Becker W, Hohe J.Numerical determination of initial and subsequent yield surfaces of open-celled model foams. International Journal of Solids and Structures, 2007, 44(7): 2093-2108
    Liu YD, Yu JL, Zheng ZJ, et al.A numerical study on the rate sensitivity of cellular metals. International Journal of Solids and Structures, 2009, 46(22): 3988-3998
    Marcadon V, Feyel F.Modelling of the compression behaviour of metallic hollow-sphere structures: About the influence of their architecture and their constitutive material's equations. Computational Materials Science, 2010, 47(2): 599-610
    Giorgi MD, Carofalo A, Dattoma V, et al.Aluminium foams structural modelling. Computers & Structures, 2010, 88(1): 25-35
    Machado GC, Alves MK, Rossi R, et al.Numerical modeling of large strain behavior of polymeric crushable foams. Applied Mathematical Modelling, 2011, 35(3): 1271-1281
    宫伟伟. 泡沫铝动态力学性能的物质点法研究. [博士论文]. 北京: 清华大学, 2012
    (Gong Weiwei.Numerical study of dynamical behaviors of aluminum foam using material point method. [PhD Thesis]. Beijing: Tsinghua University, 2012 (in Chinese))
    Zhang CY, Tang LQ, Yang B, et al.Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams. Computational Materials Science, 2013, 79: 45-51
    张健, 赵桂平, 卢天健. 闭孔泡沫铝的多轴唯象受压本构参数. 力学学报, 2015, 47(4): 651-663
    (Zhang Jian, Zhao Guiping, Lu Tianjian.Multiaxial phenomenological compressible constitutive parameters for closed-cell aluminum foams. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 651-663 (in Chinese))
    张乐, 张健, 赵桂平. 闭孔泡沫铝的塑性泊松比. 固体力学学报, 2015, 36(3): 244-250
    (Zhang Le, Zhang Jian, Zhao Guiping.Plastic poisson's ratio of closed-cell aluminum foams. Chinese Journal of Solid Mechanics, 2015, 36(3): 244-250 (in Chinese))
    王长峰, 郑志军, 虞吉林. 泡沫金属的微惯性效应和动态塑性泊松比. 爆炸与冲击, 2014, 34(5): 601-607
    (Wang Changfeng, Zheng Zhijun, Yu Jilin.Micro-inertia effect and dynamic plastic Poisson's ratio of metallic foams under compression. Explosion and Shock Waves, 2014, 34(5): 601-607 (in Chinese))
    范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟. 爆炸与冲击, 2014, 34(6): 742-747
    (Fan Zhigeng, Chen Changqing, Wan Qiang.Finite element simulation on the rate-dependent properties of aluminum foams. Explosion and Shock Waves, 2014, 34(6): 742-747 (in Chinese))
    Jeon I, Asahina T, Kang KJ, et al.Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mechanics of Materials, 2010, 42(3): 227-236
    李侯贞强, 张亚栋, 张锦华等. 基于CT的泡沫铝三维细观模型重建及应用. 北京航空航天大学学报, 2018, 44(1): 160-168
    (Li Houzhenqiang, Zhang Yadong, Zhang Jinhua, et al.Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168 (in Chinese))
    Reyes A, Hopperstad OS, Berstad T, et al.Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics, 2003, 22(6): 815-835
    Shahbeyk S, Petrinic N, Vafai A.Numerical modelling of dynamically loaded metal foam-filled square columns. International Journal of Impact Engineering, 2007, 34(3): 573-586
    Hanssen AG, Hopperstad OS, Langseth M, et al.Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44(2): 359-406
    寇玉亮, 陈常青, 卢天建. 泡沫铝率相关本构模型及其在三明治夹芯板冲击吸能特性的应用研究. 固体力学学报, 2011, 32(3): 217-227
    (Kou Yuliang, Chen Changqing, Lu Tianjian.A rate-dependent constitutive model for aluminum foams and its application to the energy absorption of lightweight sandwich panels with aluminum foam cores. Acta Mechanica Solida Sinica, 2011, 32(3): 217-227 (in Chinese))
    王纪伟. 基于三维模型的闭孔泡沫铝力学性能的有限元分析. [硕士论文]. 南京: 东南大学, 2013
    (Wang Jiwei.Mechanical properties analysis of closed-cell aluminum foam using three-dimensional finite element model. [Master Thesis]. Nanjing: Southeast University, 2013 (in Chinese))
    张晓阳. 多轴条件下基于细观结构模型的泡沫金属屈服与破坏行为研究. [博士论文]. 广州: 华南理工大学, 2016
    (Zhang Xiaoyang.Study on the yield and failure behaviors of metal foam under multi-axial loading based on meso-structure models. [PhD Thesis]. Guangzhou: South China University of Technology, 2016 (in Chinese))
    Lopatnikov SL, Gama BA, Jahirul Haque M, et al.Dynamics of metal foam deformation during Taylor cylinder--Hopkinson bar impact experiment. Composite Structures, 2003, 61(1): 61-71
    Lopatnikov SL, Gama BA, Haque MJ, et al.High-velocity plate impact of metal foams. International Journal of Impact Engineering, 2004, 30(4): 421-445
    Pattofatto S, Elnasri I, Zhao H, et al.Shock enhancement of cellular structures under impact loading: Part II analysis. Journal of the Mechanics & Physics of Solids, 2007, 55(12): 2672-2686
    Harrigan JJ, Reid SR, Yaghoubi AS.The correct analysis of shocks in a cellular material. International Journal of Impact Engineering, 2010, 37(8): 918-927
    Zheng Z, Liu Y, Yu J, et al.Dynamic crushing of cellular materials: Continuum-based wave models for thetransitional and shock modes. International Journal of Impact Engineering, 2012, 42(4): 66-79
    Tan PJ, Reid SR, Harrigan JJ, et al.Dynamic compressive strength properties of aluminium foams. part I---Experimental data and observation. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174-2205
    Gioux G, Mccormack TM, Gibson LJ.Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 2000, 42(6): 1097-1117
    Huang WM.A simple approach to estimate failure surface of polymer and aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 2003, 45(9): 1531-1540
    LS-DYNA Theory Manual. Livermore Software Technology Corporation, 2019
    ABAQUS User's Manual. Hibbitt, Karlsson & Sorensen Inc., 2005
    Gibson LJ, Ashby MF, Zhang J, et al.Failure surfaces for cellular materials under multiaxial loads---I.modelling. International Journal of Mechanical Sciences, 1989, 31(9): 635-663
    Triantafillou TC, Zhang J, Shercliff TL, et al.Failure surfaces for cellular materials under multiaxial loads---II. Comparison of models with experiment. International Journal of Mechanical Sciences, 1989, 31(9): 665-678
    刘培生. 泡沫金属的经典性模型--Gibson-Ashby模型浅析. 有色金属工程, 2005, 57(2): 55-57
    (Liu Peisheng.Basic analysis to classical model for foamed metals. Nonferrous Metals, 2005, 57(2): 55-57 (in Chinese))
    Andrews E, Sanders W, Gibson LJ.Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering: A, 1999, 270(2): 113-124
    Zhang J, Kikuchi N, Lin Z, et al.Constitutive modeling and material characterization of polymeric foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 1997, 119(3): 284-291
    刘金龙, 栾茂田, 许成顺等. Drucker-Prager准则参数特性分析. 岩石力学与工程学报, 2006(S2): 4009-4015
    (Liu Jinlong, Luan Maotian, Xu Chengshun, et al.Study on parametric characters of drucker-prager criterion. Chinese Journal of Rock Mechanics and Engineering, 2006(S2): 4009-4015 (in Chinese))
    Ruan D, Lu G, Ong LS, et al.Triaxial compression of aluminium foams. Composites Science & Technology, 2007, 67(6): 1218-1234
    Wicklein M, Thoma K.Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam. Materials Science and Engineering: A, 2005, 397(1): 391-399
    竺汝彬. 泡沫铝质材料屈服行为的数值研究. [硕士论文]. 武汉: 华中科技大学, 2008
    (Zhu Rubin.Numerical study on yield-surface of metal foam material. [Master Thesis]. Wuhan: Huazhong University of Science and Technology, 2008 (in Chinese))
    Combaz E, Bacciarini C, Charvet R, et al.Yield surface of polyurethane and aluminium replicated foam. Acta Materialia, 2010, 58(15): 5168-5183
    Badiche X, Forest S, Guibert T, et al.Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. Materials Science and Engineering: A, 2000, 289(1): 276-288
    Dillard T, Forest S, Ienny P.Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics - A/Solids, 2006, 25(3): 526-549
    Alkhader M, Vural M.An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 871-890
    Ayyagari RS, Vural M.Multiaxial yield surface of transversely isotropic foams: Part I---Modeling. Journal of the Mechanics and Physics of Solids, 2015, 74: 49-67
    Deshpande VS, Fleck NA.Multi-axial yield behaviour of polymer foams. Acta Materialia, 2001, 49(10): 1859-1866
    Chen C, Lu TJ, Fleck NA.Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272
    Sridhar I, Fleck NA.The multiaxial yield behaviour of an aluminium alloy foam. Journal of Materials Science, 2005, 40(15): 4005-4008
    Wu Y, Dan Q, Tang L, et al.Global topology of failure surfaces of metallic foams in principal-stress space and principal-strain space studied by numerical simulations. International Journal of Mechanical Sciences, 2019, 151: 551-562
    Zhang X, Tang L, Liu Z, et al.Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D voronoi model. Mechanics of Materials, 2016, 104:73-84
    Sun Y, Li QM.Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 2018, 112: 74-115
    Hall IW, Guden M, Yu CJ.Crushing of aluminum closed cell foams: Density and strain rate effects. Scripta Materialia, 2000, 43: 515-521
    Peroni L, Avalle M, Peroni M.The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 2008, 35: 644-658
    Zhao H, Elnasri I, Li H.The mechanism of strength enhancement under impact loading of cellular materials. Advanced Engineering Materials, 2006, 8: 877-883
    王鹏飞, 徐松林, 胡时胜. 基于温度与应变率相互耦合的泡沫铝本构关系. 高压物理学报, 2014, 28(1): 23-28
    (Wang Pengfei, Xu Songlin, Hu Shisheng.A constitutive relation of aluminum foam coupled with temperature and strain rate. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28 (in Chinese))
    王海波, 周伟, 阎昱等. 基于非关联流动规律的Gotoh屈服准则的参数确定方. 力学学报, 2018, 50(5): 1051-1062
    (Wang Haibo, Zhou Wei, Yan Yu, et al.Parameter determination method of gotoh yield criterion based on non-associated flow rule. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1051-1062 (in Chinese)
    王鹰宇. Abaqus分析用戶手册分析卷. 北京: 机械工业出版社, 2017
    (Wang Yuying.Abaqus Analysis User's Guide. Analysis Volume. Beijing: China Machine Press, 2017 (in Chinese))
    Tagarielli VL, Deshpande VS, Fleck NA, et al.A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood. International Journal of Mechanical Sciences, 2005, 47(4): 666-686
    习会峰, 刘逸平, 汤立群等. 考虑温度效应的泡沫铝静态压缩本构模型. 哈尔滨工程大学学报, 2013, 34(8): 1000-1005
    (Xi Huifeng, Liu Yiping, Tang Liqun, et al.Constitutive model of aluminum foam with temperature effect under quasi-static compression. Journal of Harbin Engineering University, 2013, 34(8): 1000-1005 (in Chinese))
    Liu Q, Subhash G.A phenomenological constitutive model for foams under large deformations. Polymer Engineering & Science, 2004, 44(3): 463-473
    Sherwood JA, Frost CC.Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading. Polymer Engineering & Science, 1992, 32(16): 1138-1146
    朱长峰. 复杂应力状态/动态压缩下的泡沫金属本构模型. [博士论文]. 合肥: 中国科学技术大学, 2019
    (Zhu Changfeng.Constitutive model of metal foam under comples stress/dynamic compression. [PhD Thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese))
    Fang H, Bi J, Zhang C, et al.A constitutive model of aluminum foam for crash simulations. International Journal of Non-Linear Mechanics, 2017, 90: 124-136
    王鹏飞. 多孔金属的动态力学响应及其温度相关性研究. [博士论文]. 合肥: 中国科学技术大学, 2012
    (Wang Pengfei.Research on dynamic mechanical response of cellular metals and temperature dependcy. [PhD Thesis]. Hefei: University of Science and Technology of China, 2012 (in Chinese))
  • Related Articles

    [1]Wei Haolin, Wu Zhen, Ren Xiaohui. ADAPTIVE MULTISCALE FINITE ELEMENT METHOD BASED ON ANISOTROPIC FRACTURE PHASE FIELD MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2902-2912. DOI: 10.6052/0459-1879-24-147
    [2]Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. CRYSTAL PLASTIC FINITE ELEMENT SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT-GRAINED MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149
    [3]Li Weiwei, Yang Qingsheng, Liu Zhiyuan. NANOINDENTATION EXPERIMENT AND FINITE ELEMENT SIMULATION FOR BIOMECHANICAL BEHAVIOR OF RED BLOOD CELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 614-621. DOI: 10.6052/0459-1879-2012-3-20120319
    [4]Yun Xu, Jun Chen, Xijun Wei. A new adaptive finite element method for multiscale dynamic simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 722-729. DOI: 10.6052/0459-1879-2009-5-2008-024
    [5]A theoretical and experimental study on the quasi-static constitutive model of aluminum foams[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 673-679. DOI: 10.6052/0459-1879-2004-6-2004-157
    [6]Application of stress functions and its dual theory to finite element[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 419-426. DOI: 10.6052/0459-1879-2004-4-2003-277
    [7]RESEARCH ON NON OSCILLATION, PARAMETER FREE FINITE ELEMENT SCHEME 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(4): 391-403. DOI: 10.6052/0459-1879-1998-4-1995-142
    [8]FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 575-584. DOI: 10.6052/0459-1879-1996-5-1995-371
    [9]ANTI-PLANE WAVE MOTION IN FINITE ELEMENT MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 207-215. DOI: 10.6052/0459-1879-1992-2-1995-729
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(5)

    1. 张晓阳,刘泽宇,赵飘. 泡沫金属经典本构模型表征三轴拉伸和拉压组合条件下宏观力学性能的研究. 南华大学学报(自然科学版). 2024(02): 66-72 .
    2. 刘彦,王百川,闫俊伯,闫子辰,时振清,黄风雷. 侵彻作用下负泊松比蜂窝夹芯结构动态响应. 兵工学报. 2023(07): 1938-1953 .
    3. 吴文旺,肖登宝,孟嘉旭,刘凯,牛迎浩,薛睿,张鹏,丁文杰,叶璇,凌雪,毕颖,夏勇. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报. 2021(03): 611-638 . 本站查看
    4. 贾然,赵桂平. 闭孔泡沫铝泊松比及三轴压缩变形模式. 力学学报. 2021(08): 2289-2297 . 本站查看
    5. 王立才. 机械制造中新型金属材料的应用研究. 南方农机. 2020(22): 116-117 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (2734) PDF downloads (935) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return