EI、Scopus 收录
中文核心期刊
Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282. DOI: 10.6052/0459-1879-19-271
Citation: Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282. DOI: 10.6052/0459-1879-19-271

PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE

  • Received Date: September 29, 2019
  • Soil-structure interaction analysis is an important step in seismic design and safety assessment of nuclear power structures. Material damping and non-linearity are important factors affecting the structural response in the analysis of soil-structure dynamic interaction of nuclear power structures. If the frequency-domain method is used, the damping can be easily considered, but the equivalent linearization is needed to consider the non-linearity, which is not suitable for strong earthquakes, The time-step integration method is suitable for considering non-linearity, but Rayleigh damping model is generally used for material damping. Except for a few modes with specified damping ratio, the response of other modes will be restrained by the large damping determined by Rayleigh damping model, which makes the seismic response quite different from the real situation. If the modal superposition method is used, the damping effect can be reasonably taken into account, but the non-linearity can not be taken into account in the modal superposition method. Therefore, how to reasonably consider the damping and non-linearity is an important issue in the soil-structure interaction analysis of nuclear power structures. Considering that the main structure of nuclear power plant is rigid, and it is not easy to enter the non-linearity under earthquake, a new method for soil-structure interaction analysis is proposed in this paper. The modal superposition method is used to structure analysis, and the soil and foundation is analyzed by the explicit time-step integration method, the influence of infinite domain (radiation damping) is considered through artificial boundary conditions. This partitioned algorithm of soil-structure interaction based on modal superposition and time-step integration is realized, and verified by a simple example. Then, the soil-structure interaction analysis of a CAP1400 nuclear power structure is conducted, with the modal damping and Rayleigh damping are adopted respectively. The difference between modal damping and Rayleigh damping on the structure and site response is compared and analyzed. The results show that the structural damping model has little effect on the site response, but has obvious effect on the structure response.
  • [1] Seismic analysis of safety-related nuclear structure. ASCE standard, ASCE/SEI4-16
    [2] Liao ZP, Wong HL . A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dynamics and Earthquake Engineering, 1984,3:174-183
    [3] 刘晶波, 李彬 . 三维黏弹性静-动力统一人工边界. 中国科学: 工程科学材料科学, 2005,35(9):966-980
    [3] ( Liu Jingbo, Li Bin . 3D viscoelastic static-dynamic unified artificial boundary. Chinese Science: Engineering Science Materials Science, 2005,35(9):966-980 (in Chinese))
    [4] 谷音, 刘晶波, 杜义欣 . 三维一致黏弹性人工界及等效黏弹性边界单元. 工程力学, 2007,24(12):31-37
    [4] ( Gu Yin, Liu Jingbo, Du Yixin . 3D consistent viscous-spring artificial boundary and viscous-spring boundary element. Engineering Mechanics, 2007,24(12):31-37 (in Chinese))
    [5] 章小龙, 李小军, 陈国兴 等. 黏弹性人工边界等效载荷算的改进方法. 力学学报, 2016,48(5):1126-1135
    [5] ( Zhang Xiaolong, Li Xiaojun, Chen Guoxing , et al. An improved method for calculating equivalent load of viscoelastic artificial boundary. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1126-1135 (in Chinese))
    [6] Kausel E . Damping matrices revisited. Journal of Engineering Mechanics, 2014,140(8):04014055
    [7] Luco JE . A note on classical damping matrices. Earthquake Engineering & Structural Dynamics, 2008,37(4):615-626
    [8] Chopra AK , McKenna F. Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation. Earthquake Engineering & Structural Dynamics, 2016,45:193-211
    [9] Luco JE, Lanzi A . Optimal Caughey series representation of classical damping matrices. Soil Dynamics and Earthquake Engineering, 2017,92:253-265
    [10] Hall JF . Problems encountered from the use (or misues) of Rayleigh damping. Earthquake Engineering & Structural Dynamics, 2006,35:525-545
    [11] 黄宗明, 白绍良, 赖明 . 结构地震反应时程分析中阻尼问题评述. 地震工程与工程振动, 1996,16(2):95-105
    [11] ( Huang Zongming, Bai Shaoling, Lai Ming . Review of damping problems in time-history analysis of structural seismic response. Earthquake Engineering and Engineering Vibration, 1996,16(2):95-105 (in Chinese))
    [12] 淡丹辉, 孙利民 . 结构动力有限元分析的阻尼建模及评价. 振动与冲击, 2007,26(2):121-124
    [12] ( Tan Danhui, Sun Limin . Damping modeling and evaluation for dynamic finite element analysis of structures. Journal of Vibration and Shock, 2007,26(2):121-124 (in Chinese))
    [13] 楼梦麟, 张静 . 大跨度拱桥地震反应分析中阻尼模型的讨论. 振动与冲击, 2009,28(5):22-26
    [13] ( Lou Menglin, Zhang Jing . Discussion on damping models for seismic response analysis of long-span. Journal of Vibration and Shock, 2009,28(5):22-26 (in Chinese))
    [14] 李田 . 结构时程动力分析中的阻尼取值研究. 土木工程学报, 1997,30(3):68-73
    [14] ( Li Tian . Study on damping value in time-history dynamic analysis of structures. China Civil Engineering Journal, 1997,30(3):68-73 (in Chinese))
    [15] 杨志勇, 李桂清, 瞿伟廉 . 结构阻尼的发展及其研究近况. 武汉工业大学学报, 2000,22(3):38-41
    [15] ( Yang Zhiyong, Li Guiqing, Qu Weilian . Development of structural damping and recent research. Journal of Wuhan University of Technology, 2000,22(3):38-41 (in Chinese))
    [16] 邹德高, 徐斌, 孔宪京 . 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究. 岩土力学, 2011,32(3):797-803
    [16] ( Zou Degao, Xu Bin, Kong Xianjing . Study of influence of different methods for calculating Rayleigh damping coefficient on high earth-rock dam seismic response. Rock and Soil Mechanics, 2011,32(3):797-803 (in Chinese))
    [17] 李小军, 侯春林, 潘蓉 等. 阻尼矩阵选取对核电厂结构地震响应的影响研究. 振动与冲击, 2015,34(1):110-116
    [17] ( Li Xiaojun, Hou Chunlin, Pan Rong , et al. Effect analysis of damping matrix on seismic response of nuclear power plant structure. Journal of Vibration and Shock, 2015,34(1):110-116 (in Chinese))
    [18] Ostadan F, Deng N . Computer Program: SASSI2010-A System for Analysis of Soil-Structure Interaction. Version1.1. Geotechnical and Hydraulic Engineering Services. Bechtel National Inc., San Francisco, California, 2011
    [19] Bolisetti C, Whittaker AS, Mason HB , et al. Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 2014,275(8):107-121
    [20] Coleman JL, Bolisetti C, Whittaker AS . Time-domain soil-structure interaction analysis of nuclear facilities. Nuclear Engineering and Design, 2016,298:264-270
    [21] Jeremic B, Jie G, Preisig M , et al. Time domain simulation of soil-foundation-structure interaction in non-uniform soils. Earthquake Engineering and Engineering Vibration, 2009,38(5):699-718
    [22] Kabanda J, Kwon OS, Kwon G . Time and frequency domain analyses of the Hualien large-scale seismic test. Nuclear Engineering and Design, 2015,295:261-275
    [23] 陈少林, 唐敢, 刘启方 等. 三维土-结构动力相作用的一种时域直接分析方法. 地震工程与工程动, 2010,30(2):24-31
    [23] ( Chen Shaolin, Tang Gang, Liu Qifang , et al. A direct time-domain method for analysis of three-dimensional soil-structure dynamic interaction. Earthquake Engineering and Engineering Dynamics, 2010,30(2):24-31 (in Chinese))
    [24] 陈少林, 王俊泉, 刘启方 等. 基于显-隐式格式的三维时域土-结相互作用分析的异步并行算法. 中国科学:技术科学, 2017,47(12):1321-1330
    [24] ( Chen Shaolin, Wang Junquan, Liu Qifang , et al. Asynchronous parallel algorithm for three-dimensional soil-structure interaction analysis based on explicit-implicit integration scheme. Scientia Sinica Technologica, 2017,47(12):1321-1330 (in Chinese))
    [25] Leger P, Ide IM, Paultre P . Multiple support seismic analysis of large structures. Computers & Structures, 1990,36(6):1153-1158
    [26] 胡聿贤 . 地震工程学. 第2版. 北京: 地震出版社, 2006
    [26] ( Hu Yixian . Seismic Engineering. Second Edition. Beijing: Seismological Press, 2006 (in Chinese))
    [27] 周国良, 李小军, 刘必灯 等. 大质量法在多点激励分析中的应用、误差分析及改进. 工程力学, 2011,28(1):48-54
    [27] ( Zhou Guoliang, Li Xiaojun, Liu Bideng , et al. Error analysis and improvements of large mass method used in multi-support seismic excitation analysis. Engineering Mechanics, 2011,28(1):48-54 (in Chinese))
    [28] 陈少林, 朱学江, 赵宇昕 等. 考虑土骨架非线性的饱和土-结构相互作用分析. 地震工程与工程振动, 2019,39(1):114-127
    [28] ( Chen Shaolin, Zhu Xuejiang, Zhao Yuxin , et al. Analysis of saturated soil-structure interaction considering nonlinearity of soil skeleton. Earthquake Engineering and Engineering Vibration, 2019,39(1):114-127 (in Chinese))
    [29] 陈少林, 赵宇昕 . 一种三维饱和土-基础-结构动力相互作用分析方法. 力学学报, 2016,48(6):1362-1371
    [29] ( Chen Shaolin, Zhao Yuxin . A method for three-dimensional saturated soil-foundation-structure dynamic interaction analysis. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(6):1362-1371 (in Chinese))
    [30] Wolf JP . Dynamic Soil-Structure Interaction. Prentice-Hall,Inc, 1985
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
    [3]Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. DOI: 10.6052/0459-1879-20-213
    [4]Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224
    [5]Liu Jingbo, Tan Hui, Bao Xin, Wang Dongyang, Li Shutao. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 32-43. DOI: 10.6052/0459-1879-17-336
    [6]Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong. DYNAMICAL ARTIFICIAL BOUNDARY FOR FLUID MEDIUM IN WAVE MOTION PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427. DOI: 10.6052/0459-1879-17-199
    [7]Zhang Xiaolong, Li Xiaojun, Chen Guoxing, Zhou Zhenghua. AN IMPROVED METHOD OF THE CALCULATION OF EQUIVALENT NODAL FORCES IN VISCOUS-ELASTIC ARTIFICIAL BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. DOI: 10.6052/0459-1879-16-070
    [8]Xiuli Du, Mi Zhao. A novel high-order spring-dashpot-mass boundary for cylindrical-symmetry wave motions in infinite domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 207-215. DOI: 10.6052/0459-1879-2009-2-2007-404
    [9]A stress artificial boundary in FEA for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. DOI: 10.6052/0459-1879-2006-1-2004-442
    [10]A METHOD FOR THE STABILITY ANALYSIS OF LOCAL ARTIFICIAL BOUNDARIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(3): 376-380. DOI: 10.6052/0459-1879-1996-3-1995-344
  • Cited by

    Periodical cited type(7)

    1. 吴绍恒,陈少林,刘鸿泉,孙晓颖. 地下水位对核电结构地震反应的影响分析. 振动工程学报. 2024(04): 556-564 .
    2. 陈少林,王俊豪,周国良. 海上浮式核电平台地震响应分区分析方法. 力学学报. 2024(10): 3084-3098 . 本站查看
    3. Lv Hao,Chen Shaolin. Seismic response characteristics of nuclear island structure at generic soil and rock sites. Earthquake Engineering and Engineering Vibration. 2023(03): 667-688 .
    4. 刘鸿泉,陈少林,孙晓颖,吴绍恒. 基于神经网络的核电厂设备易损性分析. 力学学报. 2022(07): 2059-2070 . 本站查看
    5. 孙杰,陈少林,王波,陈宝魁,王东升. 海水-海床-桥梁系统地震响应分析分区并行方法研究. 中国科学:技术科学. 2022(10): 1495-1508 .
    6. 尹训强,付忠余. 考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析. 震灾防御技术. 2022(04): 666-673 .
    7. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1462) PDF downloads (125) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return