Processing math: 100%
EI、Scopus 收录
中文核心期刊
Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. DOI: 10.6052/0459-1879-19-249
Citation: Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. DOI: 10.6052/0459-1879-19-249

AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME

  • Received Date: September 03, 2019
  • The performance improvement of the WENO-Z+ scheme depends on the role of the additional term, which is added to the WENO-Z weights to increase the weights of less-smooth substencils further. Since the additional term may lead to negative dissipation by over increasing the weights of less-smooth substencils in smooth regions, the coefficient λ is set to control the role of this term and needs to be carefully determined. In this paper, the defects of the method the WENO-Z+ scheme adopts to determine the value of λ are pointed out: It can neither fully utilize the potential of the scheme nor effectively avoid negative dissipation. We propose that to take the full role of the additional term in reducing numerical dissipation and improving resolution ability, the value of λ should change with the local data of the flow field. Based on this idea, we design a new calculation formula for λ, which can adjust the role of the additional term adaptively: Weaken the role of the additional term only where the weights of less-smooth substencils are easy to be excessively increased. The new scheme employing the new λ formula is named WENO-Z++, and its numerical performance is systematically analyzed. Theoretical analysis indicates that the new scheme maintains essentially non-oscillatory (ENO) property and has lower numerical dissipation at discontinuities. The investigation of approximate dispersion relation (ADR) shows that the new scheme effectively avoids the negative dissipation caused by excessive increase of the weights of less-smoothed substencils, and its spectral properties are significantly improved. The parameters set that allow the new scheme keeping the optimal order of accuracy at extreme points is deduced. A series of numerical experiments for solving the Euler equations show that both the shock-capturing ability and resolution for complex flow structure of the new scheme are significantly better than those of the original WENO-Z+ scheme.
  • 1 Fu L, Tang Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. Journal of Scientific Computing, 2019,80:692-716
    2 Nonomura T, Fujii K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. Journal of Computational Physics, 2017,340:358-388
    3 Huang ZY, Lin G, Ardekani AM. A mixed upwind/central WENO scheme for incompressible two-phase flows. Journal of Computational Physics, 2019,387:455-480
    4 Liu HP, Gao ZX, Jiang CW, et al. Numerical study of combustion effects on the development of supersonic turbulent mixing layer flows with WENO schemes. Computers and Fluids, 2019,189:82-93
    5 童福林, 李新亮, 唐志共 . 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49:(1):93-104
    5 ( Tong Fulin, Li Xinliang, Tang Zhigong, Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):93-104 (in Chinese))
    6 童福林, 李欣, 于长平 等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018,50(2):197-208
    6 ( Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):197-208 (in Chinese))
    7 洪正, 叶正寅 . 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018,50(6):1356-1367
    7 ( Hong Zheng, Ye Zhengyin, Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. ChineseJournal of Theoretical and Applied Mechanics, 2018,50(6):1356-1367 (in Chinese))
    8 Yu PX, Bai JQ, Yang H, et al. Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme. Chinese Journal of Aeronautics, 2018,31(5):1020-1029
    9 Sirajuddin D, Hitchon WNG. A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. Journal of Computational Physics, 2019,392:619-665
    10 Lefèvre V, Garnica A, Lopez-Pamies O. A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019,349:17-44
    11 Kumar S, Singh P. High order WENO finite volume approximation for population density neuron model. Applied Mathematics and Computation, 2019,356:173-189
    12 Wang D, Byambaakhuu T. High-order Lax-Friedrichs WENO fast sweeping methods for the SN neutron transport equation. Nuclear Science and Engineering, 2019,193(9):982-990
    13 Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987,71(2):231-303
    14 Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994,115(1):200-212
    15 Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996,126(1):202-228
    16 Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005,207(2):542-567
    17 Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008,227(6):3191-3211
    18 Ha Y, Kim CH, Lee YJ, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. Journal of Computational Physics, 2013,232(1):68-86
    19 Kim CH, Ha YS, Yoon JH. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes. Journal of Scientific Computing, 2016,67:299-323
    20 Fan P, Shen YQ, Tian BL, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014,269:329-354
    21 Yan ZG, Liu HY, Mao ML, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme. Computers and Fluids, 2016,127:226-240
    22 Yamaleev NK, Carpenter MH. Third-order energy stable WENO scheme. Journal of Computational Physics, 2009,228(8):3025-3047.
    23 Yamaleev NK, Carpenter MH. A systematic methodology for constructing high-order energy stable WENO schemes. Journal of Computational Physics, 2009,228(11):4248-4272
    24 Baeza A, Bürger R, Mulet P, et al. On the efficient computation of smoothness indicators for a class of WENO reconstructions. Journal of Scientific Computing, 2019,80:1240-1263
    25 Bhise AA, Gande NR, Samala R, et al. An efficient hybrid WENO scheme with a problem independent discontinuity locator. International Journal for Numerical Methods in Fluids, 2019,91:1-28
    26 Zhang SH, Zhu J, Shu CW. A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Advances in Aerodynamics, 2019,1:16
    27 Aràndiga F, Baeza A, Belda AM, et al. Analysis of WENO schemes for full and global accuracy. SIAM Journal on Numerical Analysis, 2011,49(2):893-915
    28 Don WS, Borges R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. Journal of Computational Physics, 2013,250:347-372
    29 Acker F, Borges RBDR, Costa B. An improved WENO-Z scheme. Journal of Computational Physics, 2016,313:726-753
    30 Borges RBDR. Recent results on the improved WENO-Z+ scheme// Bittencourt ML eds. Lecture Notes in Computational Science and Engineering 119, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 Rio de Janeiro, Brazil 2016, New York: Springer International Publishing, 2017: 547559
    31 Xu WZ, Wu WG. An improved third-order WENO-Z scheme. Journal of Scientific Computing, 2018,75:1808-1841
    32 Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006,219(2):489-497
    33 Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. Journal of Computational Physics, 1989,83(1):32-78
    34 Titarev VA, Toro EF. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 2004,201(1):238-260
    35 Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 1954,7(1):159-193
    36 Lax PD, Liu XD. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, 1998,19(2):319-340
    37 Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984,54(1):115-173
    38 Shi J, Zhang YT, Shu CW. Resolution of high order WENO schemes for complicated flow structures. Journal of Computational Physics, 2003,186(2):690-696
  • Related Articles

    [1]Xu Xiaoyang, Zhao Yuting, Li Jiayu, Yu Peng. SIMULATIONS OF NON-ISOTHERMAL VISCOELASTIC COMPLEX FLOWS BY IMPROVED SPH METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1099-1112. DOI: 10.6052/0459-1879-22-602
    [2]Zhong Wei, Jia Leiming, Wang Shufei, Tian Zhou. A HIGH-EFFICIENCY AND HIGH-RESOLUTION MAPPED WENO SCHEME AND ITS APPLICATIONS IN THE NUMERICAL SIMULATION OF PROBLEMS WITH COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3010-3031. DOI: 10.6052/0459-1879-22-247
    [3]Qiu Jingran, Zhao Lihao. PROGRESSES IN SWIMMING STRATEGY OF SMART PARTICLES IN COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2630-2639. DOI: 10.6052/0459-1879-21-402
    [4]Jianqiang Chen, Yifeng Zhang, Dingwu Jiang, Meiliang Mao. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743. DOI: 10.6052/0459-1879-2008-6-2008-020
    [5]A CARTESIAN/TRIANGULAR HYBRID GRID SOLVER FOR COMPLEX INVISCID FLOW FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 104-108. DOI: 10.6052/0459-1879-1998-1-1995-104
    [6]AN ADAPTIVE BLOCK IMPLICIT ALGORITHM FOR INCOMPRESSIBLE FLOW CALCULATION IN COMPLEX GEOMETRY BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 95-98. DOI: 10.6052/0459-1879-1997-1-1995-200
    [7]混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500
    [8]AN ANALLYSIS OF FLOW IN ATANK WITH COMPLEX GEOMETRY BY NON-ORIHOGONL FINITE VOLUME METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 483-487. DOI: 10.6052/0459-1879-1994-4-1995-571
    [9]STABILITY OF A FLOW WITH SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 742-747. DOI: 10.6052/0459-1879-1990-6-1995-1006
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(10)

    1. 柴得林,王强,易贤,刘宇. 采用重组模板的权重优化WENO-Z格式. 国防科技大学学报. 2024(01): 187-197 .
    2. 武从海 ,李虎 ,刘旭亮 ,罗勇 ,张树海 . 7阶WENO-S格式的计算效率研究. 力学学报. 2023(01): 239-253 . 本站查看
    3. 张子轩,董义道,黄梓全,孔令发,刘伟. 尺度无关高阶WCNS格式. 力学学报. 2023(01): 254-271 . 本站查看
    4. 石国权,燕振国,朱华君,马燕凯,贾斐然. 非结构高阶CPR方法的子单元限制中的问题单元侦测. 空气动力学学报. 2023(02): 38-52 .
    5. 钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 . 本站查看
    6. 胡迎港,蒋艳群,黄晓倩. 非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式. 力学学报. 2022(11): 3203-3214 . 本站查看
    7. 刘博,李诗尧,陈嘉禹,程启豪,时晓天. 基于映射函数的新型五阶WENO格式. 航空学报. 2022(12): 256-273 .
    8. 任炯,王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法. 力学学报. 2021(03): 773-788 . 本站查看
    9. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
    10. 骆信,吴颂平. 高效率的特征型紧致WENO混合格式. 北京航空航天大学学报. 2020(07): 1379-1386 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1983) PDF downloads (223) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return