EI、Scopus 收录
中文核心期刊
Chen Shaolin, Cheng Shulin, Ke Xiaofei. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. DOI: 10.6052/0459-1879-19-156
Citation: Chen Shaolin, Cheng Shulin, Ke Xiaofei. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. DOI: 10.6052/0459-1879-19-156

A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE

  • Received Date: June 16, 2019
  • The simulation of seismic wavefield at seafloor and ocean acoustic field, the influence of complex seabed media and seabed topography needs to be considered, involving the coupling between seawater, saturated seabed, elastic bedrock and structure. That means, we target simulation where several types of equations are involved such as fluid, solid and saturated porous media equation. The conventional method for this fluid-solid-saturated porous media interaction problem is to use exsisting solvers of different equations and coupling method, which needs data mapping, communication and coupling algorithm between different solvers. Here, we present an alternative method, in which the coulping between different solvers is avoided. In fact, when porosity equals to one and zero,the saturated porous media is reduced to fluid and solid respectively, so we can use the porous media equation to describe the ideal fluid and solid, and the coupling between porous media,solid and fluid turns to the coupling between porous media with different porosity. Based on this idea, firstly the Biot's equations are approximated by Galerkin scheme and the explicit lumped-mass FEM is chosen, that are well suited to parallel computation. Then considering the conditions of coupling on the irregular interface between porous media with different porosity,by solving the normal and tangential interface forces, the coupled algorithm is derived, which is proved to be suitable for the coupling between fluid,solid and saturated porous media. Thus, the coupling problem between fluid, solid and saturated porous media can be brought into a unified framework, in which only the solver of saturated porous media is used. The three-dimensional parallel code for this proposed method is programed. Considering the situation of sag terrain in water-bedrock, water-saturated seabed-bedrock system, the unified framework proposed in this paper is combined with the transmission boundary conditions to analyze the dynamic response of P wave incident, and the unified framework are verified by the results meeting the interface conditions.
  • [1] Nakamura T, Takenaka H, Okamoto T , et al. FDM Simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of Seismological Society of America, 2012,102(6):2420-2435
    [2] Okamoto T, Takenaka H . A reflection/transmission matrix formulation for seismoacoustic scattering by an irregular fluid-solid interface. Geophysical Journal International, 1999,139:531-546
    [3] Qian ZH, Yamanaka H . An efficient approach for simulating seismoacoustic scattering due to an irregular fluid-solid interface in multilayered media. Geophysical Journal International, 2012,189:524-540
    [4] Komatitsch D, Barnes C, Tromp J . Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics, 2000,65(2):623-631
    [5] Collins MD, Siegmann WL . Treatment of variable topography with the seismoacoustic parabolic equation. IEEE Journal of Ocean Engineering, 2017,42(2):488-493
    [6] Tang J, Piao SC, Zhang HG . Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation. Chinese Physics B, 2017,26(11):114301
    [7] Murphy JE, Chin-Bing SA . A finite-element model for ocean acoustic propagation and scattering. The Journal of Acoustic Society of America, 1989,86:1478-1483
    [8] Zhao HY, Jeng DS, Liao CC , et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering, 2017,128:1-21
    [9] Lin ZB, Guo YK, Jeng DS , et al. An integrated numerical model for wave-soil-pipeline interactions. Coastal Engineering, 2016,108:25-35
    [10] Ye JH . Seismic response of poroelastic seabed and composite breakwater under strong earthquake loading. Bulletin of Earthquake Engineering, 2012,10:1609-1633
    [11] 李伟华 . 考虑水--饱和土场地--结构耦合时的沉管隧道地震反应分析. 防灾减灾工程学报, 2010,30(6):607-613
    [11] ( Li Weihua . Seismic response analysis of immersed tube tunnels considering water saturated soil site structure coupling. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(6):607-613(in Chinese))
    [12] Farhat C, Lesoinne M , LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 1998,157(1):95-114
    [13] Farhat C, Lesoinne M . Two effcient staggered algorithms for serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics & Engineering, 2000,182:499-515
    [14] Farhat C, Zee KGVD, Geuzaine P . Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 2006,195(17):1973-2001
    [15] Bathe KJ, Zhang H . Finite element developments for general fluid flows with structural interactions. International Journal for Numerical Methods in Engineering, 2010,60(1):213-232
    [16] Degroote J, Haelterman R, Annerel S , et al. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures, 2010,88(7):446-457
    [17] Hou G, Wang J, Layton A . Numerical methods for fluid-structure interaction ---A review. Communications in Computational Physics, 2012,12(2):337-377
    [18] Habchi C, Russeil S, Bougeard D , et al. Partitioned solver for strongly coupled fluid--structure interaction. Computers & Fluids, 2013,71(1):306-319
    [19] Mehl M, Uekermann B, Bijl H , et al. Parallel coupling numerics for partitioned fluid--structure interaction simulations. Computers & Mathematics with Applications, 2016,71(4):869-891
    [20] Bungartz HJ, Lindner F, Gatzhammer B , et al. Precice--A fully parallel library for multi-physics surface coupling. Computers & Fluids, 2016,141:250-258
    [21] Link G, Kaltenbacher M, Breuer M , et al. A 2D finite-element scheme for fluid--solid--acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics & Engineering, 2009,198(41):3321-3334
    [22] 陈少林, 柯小飞, 张洪翔 . 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):1-13
    [22] ( Chen Shaolin, Ke Xiaofei, Zhang Hongxiang . A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):1-13(in Chinese))
    [23] 廖振鹏 . 工程波动理论导论. 第2版. 北京: 科学出版社, 2002: 136-285
    [23] ( Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering(2nd edition). Beijing: Science Press, 2002: 136-285(in Chinese))
    [24] Liao ZP, Wong HL . A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn Earthq Eng, 1984,3:174-183
    [25] 邢浩洁, 李鸿晶 . 透射边界条件在波动谱元模拟中的实现:二维波动. 力学学报, 2017,49(4):894-906
    [25] ( Xing Haojie, Li Hongjing . Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese))
    [26] 谷音, 刘晶波, 杜修力 . 三维一致粘弹性人工边界及等效粘弹性边界单元. 工程力学, 2007,24(12):31-37
    [26] ( Gu Lin, Liu Jingbo, Du Xiuli . Three-dimensional uniform viscoelastic artificial boundary and equivalent viscoelastic boundary element. Journal of Engineering Mechanics, 2007,24(12):31-37(in Chinese))
    [27] 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427
    [27] ( Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong . Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese))
    [28] 赵宇昕, 陈少林 . 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016,48(5):1145-1158
    [28] ( Zhao Yuxin, Chen Shaolin . Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1145-1158 (in Chinese))
    [29] 刘晶波, 谭辉, 宝鑫 等. 土--结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43
    [29] ( Liu Jingbo, Tan Hui, Bao Xin , et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese))
    [30] 陈少林, 廖振鹏, 陈进 . 两相介质近场波动模拟的解耦方法, 地球物理学报, 2005,48(4):909-917
    [30] ( Chen Shaolin, Liao Zhenpeng, Chen Jin . Decoupling method for near-field wave simulation of two-phase media. Journal of Geophysics, 2005,48(4):909-917 (in Chinese))
    [31] Deresiewicz H, Rice JT . The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bull Seis Soc Am, 1964,54(1):409-416
    [32] Deresiewicz H . The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull Seis Soc Am, 1964,54(1):425-430
    [33] Biot MA . Theory of propagation of elastic waves in a fluid-saturated porous solid. Acoust Soc Am, 1956,28:168-191
    [34] Biot MA . Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4):1482-1498
    [35] 柯小飞, 陈少林, 张洪翔 . P-SV波入射时海水--层状海床体系的自由场分析 .振动工程学报, 2018, 录用
    [35] ( Ke Xiaofei, Chen Shaolin , Zhang Hongxiang. Freefield analysis of seawater-layered seabed system at P-SV wave incident. Journal of Vibration Engineering, 2018, accepted (in Chinese))
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Wang Changtao, Dai Honghua, Zhang Zhe, Wang Xuechuan, Yue Xiaokui. PARALLEL ACCELERATED LOCAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION IN ORBIT COMPUTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003. DOI: 10.6052/0459-1879-22-592
    [3]Bao Yun, Xi Lingchu. PARALLEL DIRECT METHOD OF LES FOR TURBULENT WIND FIELD WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 656-662. DOI: 10.6052/0459-1879-20-052
    [4]Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. DOI: 10.6052/0459-1879-18-333
    [5]Ma Tianbao, Ren Huilan, Li Jian, Ning Jianguo. LARGE SCALE HIGH PRECISION COMPUTATION FOR EXPLOSION AND IMPACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608. DOI: 10.6052/0459-1879-15-382
    [6]Miao Xinqiang, Jin Xianlong, Ding Junhong. A HIERARCHICAL PARALLEL COMPUTING APPROACH FOR STRUCTURAL STATIC FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 611-618. DOI: 10.6052/0459-1879-13-335
    [7]Yang Shunhua. Implementation of reduced chemical kinetics for kerosene combustion and in situ adaptive tabulation in parallel computations of scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1090-1097. DOI: 10.6052/0459-1879-2010-6-lxxb2009-490
    [8]Fujun Wang, Liping Wang, Jiangang Cheng, Zhenhan Yao. A contact algorithm for parallel computation of FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 422-427. DOI: 10.6052/0459-1879-2007-3-2006-407
    [9]A PARALELL ANALYSIS METHOD FOR FULL COUPLED MULTIPHACE FLOW 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 276-284. DOI: 10.6052/0459-1879-1999-3-1995-032
    [10]PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240
  • Cited by

    Periodical cited type(14)

    1. 徐小凤,陈少林,孙杰. 近海单桩式风机地震响应分区耦合分析方法. 岩土工程学报. 2025(01): 96-105 .
    2. 陈宝魁,陈佳佳,胡思聪,陈少林,范力. 海床坡度对地震动特性的影响及其临界值. 工程力学. 2025(04): 110-120 .
    3. 张娇,陈少林,刘田田,张艳红. 库水-淤砂层-坝体-坝基体系地震响应分析. 地震研究. 2024(01): 62-73 .
    4. 吴绍恒,陈少林,刘鸿泉,孙晓颖. 地下水位对核电结构地震反应的影响分析. 振动工程学报. 2024(04): 556-564 .
    5. 陈少林,王俊豪,周国良. 海上浮式核电平台地震响应分区分析方法. 力学学报. 2024(10): 3084-3098 . 本站查看
    6. 黄朝龙,陈少林,张丽芳,沈吉荣. 水深对跨库区桥梁地震响应的影响分析. 地震工程与工程振动. 2023(05): 33-45 .
    7. 刘田田,陈少林,张娇,张艳红. 淤砂层对重力坝地震响应的影响分析. 地震工程与工程振动. 2023(06): 203-215 .
    8. 赵凯,卢艺静,王彦臻,李兆焱,陈国兴. 海底盾构隧道结构端部效应及抗减震措施研究. 振动与冲击. 2022(16): 33-42 .
    9. 孔曦骏,邢浩洁,李鸿晶. 流固耦合地震波动问题的显式谱元模拟方法. 力学学报. 2022(09): 2513-2528 . 本站查看
    10. 孙杰,陈少林,王波,陈宝魁,王东升. 海水-海床-桥梁系统地震响应分析分区并行方法研究. 中国科学:技术科学. 2022(10): 1495-1508 .
    11. 黄朝龙,陈少林,沈吉荣,张丽芳. 基于流固耦合统一计算框架的三维大规模海域场地地震反应分析——以东京湾为例. 震灾防御技术. 2022(03): 420-430 .
    12. 孔曦骏,邢浩洁,李鸿晶,周正华. 多次透射公式飘移问题的控制方法. 力学学报. 2021(11): 3097-3109 . 本站查看
    13. 陈少林,孙杰,柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报. 2020(02): 578-590 . 本站查看
    14. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1550) PDF downloads (111) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return