[1] | Ortiz M, Pandolfi A . Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999,44(9):1267-1282 | [2] | Nishioka T, Tokudome H, Kinoshita M . Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. International Journal of Solids and Structures, 2001,38:5273-5301 | [3] | Bouchard PO, Bay F, Chastel Y . Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics & Engineering, 2003,192:3887-3908 | [4] | Belytschko T, Lu YY, Gu L . Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994,37:229-256 | [5] | Rabczuk T, Belytschko T . Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2014,61:2316-2343 | [6] | Rabczuk T, Areias PMA, Belytschko T . A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007,69:993-1021 | [7] | Ai WL, Augarde CE . An adaptive cracking particle method for 2D crack propagation. International Journal for Numerical Methods in Engineering, 2016,108(2):1626-1648 | [8] | 江守燕, 李云, 杜成斌 . 改进型扩展比例边界有限元法. 力学学报, 2019,51(1):278-288 | [8] | ( Jiang Shouyan, Li Yun, Du Chengbin . Improved extended scaled boundary finite element methods. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(61):278-288 (in Chinese)) | [9] | 陈楷, 邹德高, 孔宪京 等. 多边形比例边界有限单元非线性化方法及应用. 浙江大学学报(工学版), 2017,51(10):1996-2004 | [9] | ( Chen Kai, Zou Degao, Kong Xianjing , et al. Novel nonlinear polygon scaled boundary finite element method and its application. Journal of Zhejiang University (Engineering Science), 2017,51(10):1996-2004 (in Chinese)) | [10] | 章鹏, 杜成斌, 江守燕 . 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017,49(6):1335-1347 | [10] | ( Zhang Peng, Du Chengbin, Jiang Shouyan . Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1335-1347(in Chinese)) | [11] | 钟红, 暴艳利, 林皋 . 基于多边形比例边界有限元的重力坝裂缝扩展过程模拟. 水利学报, 2014,45(S1):30-37 | [11] | ( Zhong Hong, Bao Yanli, Lin Gao . Modelling of crack propagation of gravity dams based on scaled boundary polygons. Journal of Hydraulic Engineering, 2014,45(S1):30-37 (in Chinese)) | [12] | 徐栋栋, 郑宏, 杨永涛 等. 多裂纹扩展的数值流形法. 力学学报, 2015,47(3):471-481 | [12] | ( Xu Dongdong, Zheng Hong, Yang Yongtao . Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):471-481 (in Chinese)) | [13] | 杨永涛, 徐栋栋, 郑宏 . 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014,46(5):730-738 | [13] | ( Yang Yongtao, Xu Dongdong, Zheng Hong . Evaluation on stress intensity factor of crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(5):730-738 (in Chinese)) | [14] | 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610 | [14] | ( Wen Longfei, Wang Lixiang, Tian Rong . Accrate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese)) | [15] | 刘学聪, 章青, 夏晓舟 . 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017,34(10):10-18 | [15] | ( Liu Xuecong, Zhang Qing, Xia Xiaozhou . A new enrichment function of crack tip in XFEM dynamics by explicit time algorithm. Engineering Mechanics, 2017,34(10):10-18 (in Chinese)) | [16] | Osher S, Sethian JA . Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988,79(1):12-49 | [17] | Rabinovich D, Givoli D, Vigdergauz S . Crack identification by 'arrival time' using XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 2009,77(3):337-359 | [18] | Waisman H, Chatzi E, Smyth AW . Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010,82(3):303-328 | [19] | Chatzi EN, Hiriyur B, Waisman H , et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Computers & Structures, 2011,89(7-8):556-570 | [20] | Nanthakumar SS, Lahmer T, Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013,96:373-389 | [21] | Sun H, Waisman H, Betti R . A multiscale flaw detection algorithm based on XFEM. International Journal for Numerical Methods in Engineering, 2014,100:477-503 | [22] | 江守燕, 杜成斌 . 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型. 力学学报, 2015,47(6):1037-1045 | [22] | ( Jiang Shouyan, Du Chengbin . Numerical model for identification of internal defect or inclusion based on extended finite elememt methods. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1037-1045 (in Chinese)) | [23] | Zhao W, Du C, Jiang S . An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm. Computer Methods in Applied Mechanics & Engineering, 2018,339:341-357 | [24] | Ma C, Yu T, Van Lich L , et al. An effective computational approach based on XFEM and a novel three-step detection algorithm for multiple complex flaw clusters. Computers & Structures, 2017,193:207-225 | [25] | Jung J, Jeong C, Taciroglu E . Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Computer Methods in Applied Mechanics & Engineering, 2013,259:50-63 | [26] | Zhang C, Nanthakumar SS, Lahmer T , et al. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017,206(2):151-169 | [27] | Zhang C, Wang C, Lahmer T , et al. A dynamic XFEM formulation for crack identification. International Journal of Mechanics & Materials in Design, 2016,12:427-448 | [28] | 朱宏平, 余璟, 张俊兵 . 结构损伤动力检测与健康监测研究现状与展望. 工程力学, 2011,28(2):1-11 | [28] | ( Zhu Hongping, Yu Jing, Zhang Junbing . A summary review and advantages of vibration-based damage identification methods in structural health monitoring. Engineering Mechanics, 2011,28(2):1-11 (in Chinese)) | [29] | Wahalathantri BL, Thambiratnam DP, Chan THT , et al. Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. Journal of Sound & Vibration, 2015,344:258-276 | [30] | Bui QB, Mommessin M, Perrotin P , et al. Assessing local-scale damage in reinforced concrete frame structures using dynamic measurements. Engineering Structures, 2014,79:22-31 | [31] | Wu AL, Yang JN, Loh CH . A finite-element based damage detection technique for nonlinear reinforced concrete structures. Structural Control and Health Monitoring, 2015,22:1223-1239 | [32] | Pesic N, Zivanovic S, Dennis J , et al. Experimental and finite element dynamic analysis of incrementally loaded reinforced concrete structures. Engineering Structures, 2015,103:15-27 | [33] | Stolarska M, Chopp DL, Mo?s N , et al. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001,51:943-960 | [34] | 江守燕, 杜成斌 . 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013,34(6):586-597 | [34] | ( Jiang Shouyan, Du Chengbin . Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013,34(6):586-597 (in Chinese)) |
|