EI、Scopus 收录
中文核心期刊
Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078
Citation: Jiang Shouyan, Zhao Linxin, Du Chengbin. IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1091-1100. DOI: 10.6052/0459-1879-19-078

IDENTIFICATION OF MULTIPLE FLAWS IN STRUCTURES BASED ON FREQUENCY AND MODAL ASSURANCE CRITERIA

  • Received Date: March 30, 2019
  • Static response (displacement, strain, etc.) can hardly be recorded by a group of sensors installed on the structure in the inversion analysis of practical problems, while the dynamic characteristics (frequency, mode) and dynamic response (acceleration, velocity, dynamic displacement) of the structure can be easily acquired by sensors in practical problems. In this paper, the objective function of the inversion analysis model is constructed based on frequency residuals and modal assurance criteria. Combining the advantages of dynamic extended finite element method in frequency domain and artificial bee colony intelligent optimization algorithm, the extended finite element method avoids re-meshing in each iteration by introducing discontinuous displacement approximation and can reflect the number, location and size of defects by changing the level set function. In each iteration, the artificial bee colony intelligent optimization algorithm uses global and local searches. The probability of finding the optimal solution increases greatly and avoids local optimum. At the same time, by introducing topological variables, the number of flaws is incorporated into the inversion analysis process. The number of flaws can be intelligently inverted in the iteration process. Then, the inversion analysis model of multiple flaws (voids, cracks) in the structure is established. The analysis of several examples shows that the inversion analysis model can accurately detect the number, location and size of circular flaws, elliptical flaws, or crack in the structure. The result also shows the good robustness of the algorithm.
  • [1] Ortiz M, Pandolfi A . Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999,44(9):1267-1282
    [2] Nishioka T, Tokudome H, Kinoshita M . Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. International Journal of Solids and Structures, 2001,38:5273-5301
    [3] Bouchard PO, Bay F, Chastel Y . Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics & Engineering, 2003,192:3887-3908
    [4] Belytschko T, Lu YY, Gu L . Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994,37:229-256
    [5] Rabczuk T, Belytschko T . Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2014,61:2316-2343
    [6] Rabczuk T, Areias PMA, Belytschko T . A simplified mesh-free method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007,69:993-1021
    [7] Ai WL, Augarde CE . An adaptive cracking particle method for 2D crack propagation. International Journal for Numerical Methods in Engineering, 2016,108(2):1626-1648
    [8] 江守燕, 李云, 杜成斌 . 改进型扩展比例边界有限元法. 力学学报, 2019,51(1):278-288
    [8] ( Jiang Shouyan, Li Yun, Du Chengbin . Improved extended scaled boundary finite element methods. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(61):278-288 (in Chinese))
    [9] 陈楷, 邹德高, 孔宪京 等. 多边形比例边界有限单元非线性化方法及应用. 浙江大学学报(工学版), 2017,51(10):1996-2004
    [9] ( Chen Kai, Zou Degao, Kong Xianjing , et al. Novel nonlinear polygon scaled boundary finite element method and its application. Journal of Zhejiang University (Engineering Science), 2017,51(10):1996-2004 (in Chinese))
    [10] 章鹏, 杜成斌, 江守燕 . 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017,49(6):1335-1347
    [10] ( Zhang Peng, Du Chengbin, Jiang Shouyan . Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1335-1347(in Chinese))
    [11] 钟红, 暴艳利, 林皋 . 基于多边形比例边界有限元的重力坝裂缝扩展过程模拟. 水利学报, 2014,45(S1):30-37
    [11] ( Zhong Hong, Bao Yanli, Lin Gao . Modelling of crack propagation of gravity dams based on scaled boundary polygons. Journal of Hydraulic Engineering, 2014,45(S1):30-37 (in Chinese))
    [12] 徐栋栋, 郑宏, 杨永涛 等. 多裂纹扩展的数值流形法. 力学学报, 2015,47(3):471-481
    [12] ( Xu Dongdong, Zheng Hong, Yang Yongtao . Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):471-481 (in Chinese))
    [13] 杨永涛, 徐栋栋, 郑宏 . 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014,46(5):730-738
    [13] ( Yang Yongtao, Xu Dongdong, Zheng Hong . Evaluation on stress intensity factor of crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(5):730-738 (in Chinese))
    [14] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [14] ( Wen Longfei, Wang Lixiang, Tian Rong . Accrate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [15] 刘学聪, 章青, 夏晓舟 . 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017,34(10):10-18
    [15] ( Liu Xuecong, Zhang Qing, Xia Xiaozhou . A new enrichment function of crack tip in XFEM dynamics by explicit time algorithm. Engineering Mechanics, 2017,34(10):10-18 (in Chinese))
    [16] Osher S, Sethian JA . Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988,79(1):12-49
    [17] Rabinovich D, Givoli D, Vigdergauz S . Crack identification by 'arrival time' using XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 2009,77(3):337-359
    [18] Waisman H, Chatzi E, Smyth AW . Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010,82(3):303-328
    [19] Chatzi EN, Hiriyur B, Waisman H , et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Computers & Structures, 2011,89(7-8):556-570
    [20] Nanthakumar SS, Lahmer T, Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013,96:373-389
    [21] Sun H, Waisman H, Betti R . A multiscale flaw detection algorithm based on XFEM. International Journal for Numerical Methods in Engineering, 2014,100:477-503
    [22] 江守燕, 杜成斌 . 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型. 力学学报, 2015,47(6):1037-1045
    [22] ( Jiang Shouyan, Du Chengbin . Numerical model for identification of internal defect or inclusion based on extended finite elememt methods. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1037-1045 (in Chinese))
    [23] Zhao W, Du C, Jiang S . An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm. Computer Methods in Applied Mechanics & Engineering, 2018,339:341-357
    [24] Ma C, Yu T, Van Lich L , et al. An effective computational approach based on XFEM and a novel three-step detection algorithm for multiple complex flaw clusters. Computers & Structures, 2017,193:207-225
    [25] Jung J, Jeong C, Taciroglu E . Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Computer Methods in Applied Mechanics & Engineering, 2013,259:50-63
    [26] Zhang C, Nanthakumar SS, Lahmer T , et al. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017,206(2):151-169
    [27] Zhang C, Wang C, Lahmer T , et al. A dynamic XFEM formulation for crack identification. International Journal of Mechanics & Materials in Design, 2016,12:427-448
    [28] 朱宏平, 余璟, 张俊兵 . 结构损伤动力检测与健康监测研究现状与展望. 工程力学, 2011,28(2):1-11
    [28] ( Zhu Hongping, Yu Jing, Zhang Junbing . A summary review and advantages of vibration-based damage identification methods in structural health monitoring. Engineering Mechanics, 2011,28(2):1-11 (in Chinese))
    [29] Wahalathantri BL, Thambiratnam DP, Chan THT , et al. Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. Journal of Sound & Vibration, 2015,344:258-276
    [30] Bui QB, Mommessin M, Perrotin P , et al. Assessing local-scale damage in reinforced concrete frame structures using dynamic measurements. Engineering Structures, 2014,79:22-31
    [31] Wu AL, Yang JN, Loh CH . A finite-element based damage detection technique for nonlinear reinforced concrete structures. Structural Control and Health Monitoring, 2015,22:1223-1239
    [32] Pesic N, Zivanovic S, Dennis J , et al. Experimental and finite element dynamic analysis of incrementally loaded reinforced concrete structures. Engineering Structures, 2015,103:15-27
    [33] Stolarska M, Chopp DL, Mo?s N , et al. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001,51:943-960
    [34] 江守燕, 杜成斌 . 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013,34(6):586-597
    [34] ( Jiang Shouyan, Du Chengbin . Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013,34(6):586-597 (in Chinese))
  • Related Articles

    [1]Li Yuanheng, Fan Ruixiang, Yang Fan, Zhang Hongjian, Wu Huiqiang. MODAL ANALYSIS OF MULTI-SATELLITE STACK BASED ON LINEAR EQUIVALENT MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2364-2380. DOI: 10.6052/0459-1879-24-007
    [2]Xu Xianghong, Luo Yi, Zhang Haochen, Zhou Rui, Wu Mengzhen, Huang Sijun. FULL FLEXIBLE MODEL UPDATING OF SINGLE-STRIP PANTOGRAPH BASED ON MODAL TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1753-1760. DOI: 10.6052/0459-1879-23-063
    [3]Song Xinyu, Ge Xinsheng. UNCONSTRAINED MODAL ANALYSIS OF DYNAMIC MODEL OF FLEXIBLE SPACECRAFT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 954-964. DOI: 10.6052/0459-1879-20-072
    [4]Jiyang Fu, Zhuangning Xie, Qiusheng Li, Jiurong Wu, An Xu. Equivalent static wind loads on long-span roof structures with modal response correlations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 781-787. DOI: 10.6052/0459-1879-2007-6-2007-180
    [5]Menglin Lou, Yaoqing Fan. Modal perturbation method for obtaining complex modal characteristics of non-proportional damping systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 112-118. DOI: 10.6052/0459-1879-2007-1-2006-170
    [6]QUALITATIVE PROPERTIES OF FREQUENCY SPECTRUM AND MODES OF ARBITRARY SUPPORTED BEAMS IN VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 540-547. DOI: 10.6052/0459-1879-1997-5-1995-264
    [7]THE FEASIBILITY OF THE DETERMINATION OF RIGID/ELASTIC IMPACT LOADS BETWEEN STRUCTURES WITH THE METHOD OF MODE SUPERPOSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 560-566. DOI: 10.6052/0459-1879-1995-5-1995-467
    [8]A DIRECT EIGENSYSTEM REALIZATION ALGORITHM FOR MODAL PARAMETER IDENTIFICATION IN TIME DOMAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 575-581. DOI: 10.6052/0459-1879-1993-5-1995-680
    [9]AN ACCURATE MODAL SUPERPOSITION METHOD FOR COMPUTING MODE SHAPE DERIVATIVES IN STRUCTURAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 427-434. DOI: 10.6052/0459-1879-1993-4-1995-662
    [10]AN INVESTIGATION INTO THE FIELD IDENTIFICATION TECHNIQUE OF MODAL PARAMETERS OF ROTATING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 634-640. DOI: 10.6052/0459-1879-1991-5-1995-886
  • Cited by

    Periodical cited type(8)

    1. 叶玲,江宏康,陈华鹏,冯宇轩,王力骋. 基于多链竞争差分进化算法的无砟轨道结构有限元模型修正. 交通运输工程学报. 2024(02): 112-124 .
    2. 江守燕,邓王涛,孙立国,杜成斌. 数据驱动的半无限介质裂纹识别模型研究. 力学学报. 2024(06): 1727-1739 . 本站查看
    3. 江守燕,杜成斌,孙立国. 基于数据驱动的大体积结构裂缝深度反演. 工程力学. 2023(04): 215-225 .
    4. 沈学港,江守燕,储冬冬. 基于动力XFEM的结构内多缺陷三步反演法. 力学与实践. 2023(02): 379-388 .
    5. 阳洋,凌园,高志豪,沈琪雯. 高耸类结构抗侧刚度突变位置统计矩比值检测方法研究. 仪器仪表学报. 2023(04): 271-283 .
    6. 付君健,彭铁川,李然,李帅虎,周祥曼,李响. 考虑刚度和质量耦合效应的结构弹性成像方法. 力学学报. 2023(09): 1971-1982 . 本站查看
    7. 赵林鑫,江守燕,杜成斌. 基于SBFEM和机器学习的薄板结构缺陷反演. 工程力学. 2021(06): 36-46 .
    8. 江守燕,万晨,孙立国,杜成斌. 基于SBFEM和深度学习的裂纹状缺陷反演模型. 力学学报. 2021(10): 2724-2735 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1455) PDF downloads (103) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return