EI、Scopus 收录
中文核心期刊
Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004
Citation: Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004

A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION

  • Received Date: January 01, 2019
  • The fourth order governing equation of thin plate necessitates the employment of C1 continuous shape functions with a minimum degree of two in a Galerkin formulation. Thus at least a quadratic basis function should be utilized in meshfree approximation to enable the Galerkin meshfree thin plate analysis. However, due to the rational nature of reproducing kernel meshfree shape functions, the computation of the second order derivatives of meshfree shape functions is quite complex and costly, which also requires expensive high order Gauss quadrature rules to properly integrate the stiffness matrix. In this work, a gradient smoothing Galerkin meshfree method with particular reference to the linear basis function is proposed for thin plate analysis. The foundation of the present development is the construction of smoothed meshfree gradients with linear basis function, where the second order smoothed gradients are expressed as combinations of standard first order gradients and the computational burden is remarkably reduced. Furthermore, it is shown that the smoothed meshfree gradients with linear basis function satisfy both the linear and quadratic gradient consistency conditions and consequently they are adequate for thin plate analysis in the context of Galerkin formulation. An interpolation error study is given as well to validate the higher order consistency conditions and applicability of smoothed meshfree gradients for Galerkin analysis of thin plates. It turns out that efficient lower order Gauss integration rules now work well for the proposed method. Numerical results demonstrate that compared with the conventional Galerkin meshfree method with quadratic basis function, the proposed gradient smoothing Galerkin meshfree method with linear basis function yields similar convergence rates, but with better accuracy and less integration points for stiffness computation.
  • [1] Zienkiewicz OC, Taylor RL, Zhu JZ.The Finite Element Method: Its Basis and Fundamentals (7th Edition). Singapore: Elsevier, 2015
    [2] Hughes TJR.The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications, 2000
    [3] Nayroles B, Touzot G, Villon P.Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 1992, 10(5): 307-318
    [4] Belytschko T, Lu YY, Gu L.Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256
    [5] Liu WK, Jun S, Li S, et al.Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 2010, 38(10): 1655-1679
    [6] 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36
    [6] (Zhang Xiong, Liu Yan, Ma Shang.Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36(in Chinese))
    [7] Chen JS, Hillman M, Chi SW.Meshfree methods: progress made after 20 years. Journal of Engineering Mechanics-ASCE, 2017, 143(4): 04017001
    [8] Krysl P, Belytschko T.Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, 1995, 17(1-2): 26-35
    [9] Liu GR, Chen XL.A mesh-free method for static and free vibration analyses of thin plates of complicated shape. Journal of Sound and Vibration, 2001, 241(5): 839-855
    [10] Long SY, Atluri SN.A meshless local Petrov--Galerkin method for solving the bending problem of a thin plate. CMES: Computer Modeling in Engineering and Sciences, 2002, 3(1): 53-63
    [11] Lu H, Li S, Simkins DC, et al.Reproducing kernel element method Part III: Generalized enrichment and applications. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 989-1011
    [12] Liu Y, Hon YC, Liew KM.A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems. International Journal for Numerical Methods in Engineering, 2006, 66(7): 1153-1178
    [13] 马丽红, 邱志平, 王晓军等. Winkler地基板的区间无网格Galerkin方法. 岩土工程学报, 2008, 30(3): 384-389
    [13] (Ma Lihong, Qiu Zhiping, Wang Xiaojun, et al.Interval element-free Galerkin method for plates on Winkler foundation. Chinese Journal of Geotechnical Engineering. 2008, 30(3): 384-389 (in Chinese))
    [14] Bui TQ, Nguyen MN.A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Computers & Structures, 2011, 89(3-4): 380-394
    [15] Cui XY, Liu GR, Li GY, et al.A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells. International Journal for Numerical Methods in Engineering, 2011, 85(8): 958-986
    [16] Millan D, Rosolen A, Arroyo M.Thin shell analysis from scattered points with maximum-entropy approximants. International Journal for Numerical Methods in Engineering, 2011, 85(6): 723-751
    [17] Zhang HJ, Wu JC, Wang DD.Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Frontiers of Structural and Civil Engineering, 2015, 9(4): 405-419
    [18] Wang DD, Chen JS.A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. International Journal for Numerical Methods in Engineering, 2008, 74(3): 368-390
    [19] Wang DD, Lin ZT.Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Computational Mechanics, 2010, 46(5): 703-719
    [20] Wang DD, Lin ZT.Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Computational Mechanics, 2011, 48(1): 47-63
    [21] Wang DD, Peng HK.A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Computational Mechanics, 2013, 51(6): 1013-1029
    [22] Wang DD, Song C, Peng HK.A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff--Love cylindrical shells. International Journal of Structural Stability and Dynamics, 2015, 15(6): 1450090
    [23] Tanaka S, Sadamoto S, Okazawa S.Nonlinear thin-plate bending analyses using the Hermite reproducing kernel approximation. International Journal of Computational Methods, 2012, 9(1): 1240012
    [24] Chen JS, Wu CT, Yoon S, et al.A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2015, 50(2): 435-466
    [25] 吴俊超, 邓俊俊, 王家睿等. 伽辽金型无网格法的数值积分方法. 固体力学学报, 2016, 37(3):208-233
    [25] (Wu Junchao, Deng Junjun, Wang Jiarui, et al.A review of numerical integration approaches for Galerkin meshfree methods. Chinese Journal of Solid Mechanics. 2016, 37(3):208-233 (in Chinese))
    [26] 王冰冰, 段庆林, 李锡夔等. 薄板弯曲分析的高阶高效无网格法. 固体力学学报, 2018, 39(2): 152-161
    [26] (Wang Bingbing, Duan Qinglin, Li Xikui, et al.An efficient higher-order meshfree method for thin plate analysis. Chinese Journal of Solid Mechanics. 2018, 39(2): 152-161(in Chinese))
    [27] Wang DD, Wang JR, Wu JC.Superconvergent gradient smoothing meshfree collocation method. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 728-766
    [28] Wang DD, Li ZY.A two-level strain smoothing regularized meshfree approach with stabilized conforming nodal integration for elastic damage analysis. International Journal of Damage Mechanics, 2013, 22(3): 440-459
    [29] Wu YC, Wang DD, Wu CT.Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method. Theoretical and Applied Fracture Mechanics, 2014, 72: 89-99
    [30] Timoshenko S, Krieger W.Theory of Plates and Shells. New York: McGraw-Hill, 1959
  • Related Articles

    [1]Wu Junchao, Wu Xinyu, Zhao Yaobing, Wang Dongdong. A CONSISTENT AND EFFICIENT METHOD FOR IMPOSING MESHFREE ESSENTIAL BOUNDARY CONDITIONS VIA HELLINGER-REISSNER VARIATIONAL PRINCIPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3283-3296. DOI: 10.6052/0459-1879-22-151
    [2]Zhang Lei, Zhang Yan, Ding Zhe. ADJOINT SENSITIVITY METHODS FOR TRANSIENT RESPONSES OF VISCOUSLY DAMPED SYSTEMS AND THEIR CONSISTENCY ISSUES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1113-1124. DOI: 10.6052/0459-1879-21-562
    [3]Fan Liheng, Wang Dongdong, Liu Yuxiang, Du Honghui. A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. DOI: 10.6052/0459-1879-20-361
    [4]Zou Hua, Wu Qifeng, Sun Shouguang. RESEARCH ON LOAD TEST SPECTRUM OF EMU CAR BOGIES BASED ON DAMAGE CONSISTENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 115-125. DOI: 10.6052/0459-1879-20-214
    [5]Shao Yulong, Duan Qinglin, Gao Xin, Li Xikui, Zhang Hongwu. ADAPTIVE CONSISTENT HIGH ORDER ELEMENT-FREE GALERKIN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116. DOI: 10.6052/0459-1879-16-252
    [6]Baoping Feng, Jianchun Mi. Effect of exit conditions on the self-preservation states of round jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 609-617. DOI: 10.6052/0459-1879-2009-5-2008-352
    [7]ORTHOGONALITY CONDITIONS FOR ACTIVE PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2002-392
    [8]A TRIANGULAR DISPLACEMENT-BASED ELEMENT OF THICK/THIN PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 374-379. DOI: 10.6052/0459-1879-1994-3-1995-558
    [9]A CONSISTENT ALGORITHM OF NEWTON ITERATION AND ITS APPLICATION IN PLATE BENDING FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 579-588. DOI: 10.6052/0459-1879-1990-5-1995-987
    [10]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940
  • Cited by

    Periodical cited type(9)

    1. 高效伟,刘华雩,崔苗,杨恺,吕军,彭海峰,阮波. 广义弱形式自由单元法. 力学学报. 2024(09): 2741-2751 . 本站查看
    2. 刘华雩,高效伟,范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报. 2023(06): 1394-1406 . 本站查看
    3. 付赛赛,邓立克,吴俊超,王东东,张灿辉. 再生光滑梯度无网格法动力特性研究. 应用力学学报. 2022(06): 1065-1075 .
    4. 吴俊超,吴新瑜,赵珧冰,王东东. 基于赫林格-赖斯纳变分原理的一致高效无网格本质边界条件施加方法. 力学学报. 2022(12): 3283-3296 . 本站查看
    5. 彭林欣,李知闲,项嘉诚,覃霞. 基于非线性分析的加肋板肋条位置无网格优化. 力学学报. 2022(12): 3366-3382 . 本站查看
    6. 樊礼恒,王东东,刘宇翔,杜洪辉. 节点梯度光滑有限元配点法. 力学学报. 2021(02): 467-481 . 本站查看
    7. 陈增涛,王发杰,王超. 广义有限差分法在含阻抗边界空腔声学分析中的应用. 力学学报. 2021(04): 1183-1195 . 本站查看
    8. 覃霞,刘珊珊,谌亚菁,彭林欣. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析. 力学学报. 2020(01): 93-110 . 本站查看
    9. 王莉华,李溢铭,褚福运. 基于分区径向基函数配点法的大变形分析. 力学学报. 2019(03): 743-753 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1958) PDF downloads (277) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return