EI、Scopus 收录
中文核心期刊
Shuaijie Wang, Xiaotong Cui, Jianxia Bai, Zhanqi Tang, Nan Jiang. THE EFFECT OF PERIODIC PERTURBATION ON MULTI SCALES IN A TURBULENT BOUNDARY LAYER FLOW UNDER DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 767-774. DOI: 10.6052/0459-1879-18-409
Citation: Shuaijie Wang, Xiaotong Cui, Jianxia Bai, Zhanqi Tang, Nan Jiang. THE EFFECT OF PERIODIC PERTURBATION ON MULTI SCALES IN A TURBULENT BOUNDARY LAYER FLOW UNDER DRAG REDUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 767-774. DOI: 10.6052/0459-1879-18-409

THE EFFECT OF PERIODIC PERTURBATION ON MULTI SCALES IN A TURBULENT BOUNDARY LAYER FLOW UNDER DRAG REDUCTION

  • Received Date: December 03, 2018
  • This study reports the drag reduction of a turbulent boundary layer flow under the active control by a pair of wall-mounted piezoelectric oscillators with different working frequency and amplitude. Under the maximum local skin drag reduction case of 80V and 160 Hz, a miniature boundary layer hot-wire probe of single sensor was used to measure velocity signals at the streamwise location 2 mm downstream of the oscillators. The time series of streamwise velocity signals at different wall normal positions were obtained. By comparing the turbulent fluctuations at different scales in the perturbed cases and canonical turbulent boundary layer flow, it was found that the perturbation produced by piezoelectric oscillators have an effect on the near-wall region, which attenuates the large-scale intensity and enhances the small-scale turbulence. Meanwhile, the outer layer is insensitive to the oscillator perturbation. Furthermore, conditional average of small-scale fluctuations shows that the impact of piezoelectric oscillators on small-scale fluctuations is not uniform in the condition of the large scales. The small-scale amplitude is increased more obviously as the large-scale fluctuations are positive than that the large-scale fluctuations are negative. It indicates that the current periodic perturbation dominantly modifies the high skin friction events by breaking the large-scale high-speed sweeping fluids into small-scale structures, which results in the local skin drag reduction.
  • [1] Robinson SK.Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639
    [2] Adrian RJ.Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007, 19(4): 041301
    [3] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015, 45(3): 111-139
    [3] (Xu Chunxiao.Coherent structures and drag reduction mechanism in wall turbulence. Advances in Mechanics, 2015, 45(3): 111-139 (in Chinese))
    [4] Kim KC, Adrian RJ.Very large-scale motion in the outer layer. Physics of Fluids, 1999, 11(2): 417-422
    [5] Tomkins CD, Adrian RJ.Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 2003, 490: 37-74
    [6] Hutchins N, Marusic I.Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 2007, 579: 1-28
    [7] Tang ZQ, Jiang N, Schroder A, et al.Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow. Acta Mechanica Sinica, 2012, 28(3): 572-582
    [8] Hutchins N, Marusic I.Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A, 2007, 365(1852): 647-664
    [9] Mathis R, Hutchins N, Marusic I.Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. Journal of Fluid Mechanics, 2009, 628: 311-337
    [10] Marusic I, Mathis R, Hutchins N.Predictive model for wall-bounded turbulent flow. Science, 2010, 329(5988): 193-196
    [11] Ganapathisubramani B, Hutchins N, Monty JP, et al.Amplitude and frequency modulation in wall turbulence. Journal of Fluid Mechanics, 2012, 712: 61-91
    [12] Guala M, Metzger M, McKeon BJ. Interactions within the turbulent boundary layer at high Reynolds number. Journal of Fluid Mechanics, 2012, 666: 573-604
    [13] Hutchins N, Monty JP, Ganapathisubramani B, et al.Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. Journal of Fluid Mechanics, 2011, 673: 255-285
    [14] Marusic I, Talluru KM, Hutchins N.Controlling the large-scale motions in a turbulent boundary layer// Zhou Y, Liu Yang, Huang LX, et al eds, Fluid-Structure-Sound Interactions and Control. Heidelberg: Springer publishing Company, 2014: 17-26
    [15] Kasagi N, Suzuki Y, Fukagata K.Micro electromechanical systems-based feedback control of turbulence for skin friction reduction. Annual Review of Fluid Mechanics, 2009, 41: 231-251
    [16] Kim J.Physics and control of wall turbulence for drag reduction. Philosophical Transactions of the Royal Society A, 2011, 369(1904): 1396-1411
    [17] Gad-El-Hak M. Flow Control: Passive, Active, and Reactive Flow Management. Cambridge: Cambridge University Press, 2000
    [18] Quadrio M, Ricco P.Critical assessment of turbulent drag reduction through spanwise wall oscillations. Journal of Fluid Mechanics, 2004, 521: 251-271
    [19] Skote M.Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Physics of Fluids, 2011, 23(8): 061703
    [20] Jacobson SA, Reynolds WC.Active control of streamwise vortices and streaks in boundary layers. Journal of Fluid Mechanics, 1998, 360: 179-211
    [21] Bai HL, Zhou Y, Zhang WG, et al.Active control of turbulent boundary layer based on local surface perturbation. Journal of Fluid Mechanics, 2014, 750, 316-354
    [22] 张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制. 力学学报, 2016, 48(3): 536-544
    [22] (Zhang Hao, Zheng Xiaobo, Jiang Nan.Active control of turbulent boundary layer based on a single piezoelectric oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544(in Chinese))
    [23] Zheng XB, Jiang N, Zhang H.Predetermined control of turbulent boundary layer with a piezoelectric oscillator. Chinese Physics B, 2016, 25(1): 014703
    [24] Qiao ZX, Zhou Y, Wu Z.Turbulent boundary layer under the control of different schemes. Philosophical Transactions of the Royal Society A, 2017, 473(2202): 20170038
    [25] Bai JX, Jiang N, Zheng XB, et al.2018. Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators. Chinese Physics B, 2018, 27(7): 074701
    [26] Zheng XB, Jiang N.Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer. Chinese Physics B, 2015, 24(6): 064702
    [27] 郭爱东,姜楠. 湍流多尺度相干结构复涡黏模型的实验研究. 力学学报, 2010, 42(2): 159-168
    [27] (Guo Aidong, Jiang Nan.Experimental research on complex eddy viscosity modeling of multi-scale coherent structures in wall turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 159-168 (in Chinese))
    [28] Tang ZQ, Jiang N, Zheng XB, et al.Bursting process of large-and smallscale structures in turbulent boundary layer perturbed by a cylinder roughness element. Experiments in Fluids, 2016, 57: 79
    [29] Tang ZQ, Jiang N.Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall mounted cylindrical element. Physics of Fluids, 2018, 30(5): 055103
    [30] Tian HP, Zhang JX, Jiang N, et al.Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow. Experimental Thermal and Fluid Science, 2015, 69: 27-37
    [31] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 397-405
    [31] (Guan Xin Lei, Wang Wei, Jiang Nan.Influence of polymer additives on the transport process in drag reducing turbulent flow. Acta Physica Sinica, 2015, 64(9): 397-405 (in Chinese))
    [32] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响TRPIV实验研究. 力学学报, 2016, 48(5): 1033-1039
    [32] (Su Jian, Tian Haiping, Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039 (in Chinese))
    [33] 王鑫, 李山, 唐湛棋等. 沟槽对湍流边界层中展向涡影响的实验研究. 实验流体力学, 2018, 32(1): 55-63
    [33] (Wang Xin, Li Shan, Tang Zhanqi, et al.An experimental study on riblet-induced spanwise vortices in turbulent boundary layers. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63 (in Chinese))
    [34] Tang ZQ, Jiang N.Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance. Science China, 2012, 55(1): 118-124
    [35] Feng LH, Wang JJ, Pan C.Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Physics of Fluids, 2011, 23: 014106
    [36] Farge M.Wavelet transforms and their application to turbulence. Annual Review of Fluid Mechanics. 1992, 24: 395-457
    [37] Balakumar BJ, Adrian RJ.Large-and very-large-scale motions in channel and boundary-layer flows. Philosophical Transactions of the Royal Society A, 2007, 365(1852): 665-681
    [38] Baars WJ, Talluru KM, Hutchins N, et al.Wavelet analysis of wall turbulence to study largescale modulation of small scales. Experiment in Fluids, 2015, 56(10): 188
  • Related Articles

    [1]Guo Peiyang, Zhang Yi, Zhang Mengzhuo, Hu Haibao. EXPERIMENTAL STUDY ON DRAG REDUCTION BY AIR INJECTION ON HYDROPHILIC AND ALTERNATED SUPERHYDROPHOBIC SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 94-100. DOI: 10.6052/0459-1879-23-303
    [2]Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. EXPERIMENTAL INVESTIGATION ON ACTIVE CONTROL TURBULENT BOUNDARY LAYER DRAY REDUCTION BY SYNCHRONOUS AND ASYNCHRONOUS VIBRATION OF DUAL VIBRATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 52-61. DOI: 10.6052/0459-1879-22-248
    [3]Shi Pengfei, Du Wei, Hu Haibao, Feng Jiaxing, Xie Luo. EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF DIUTAN GUM SOLUTION BY SLIT INJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1257-1263. DOI: 10.6052/0459-1879-21-567
    [4]Feng Jiaxing, Hu Haibao, Lu Bingju, Qin Liping, Zhang Mengzhuo, Du Peng, Huang Xiao. EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. DOI: 10.6052/0459-1879-19-279
    [5]Cai Shupeng, Wang Zhineng, Duan Chuanwei, Li Dan. DRAG CHARACTERISTICS OF A DRAG-REDUCING SURFACTANT SOLUTION FLOWING OVER A SUDDEN-EXPANSION PIPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 274-283. DOI: 10.6052/0459-1879-17-328
    [6]Wang Shuai, Yu Wenhao, Chen Juhui, Zhang Tianyu, Sun Liyan, Lu Huilin. MULTI-SCALE SIMULATION ON HYDRODYNAMIC CHARACTERISTICS IN BUBBLING FLUIDIZED BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 585-592. DOI: 10.6052/0459-1879-15-089
    [7]Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. DOI: 10.6052/0459-1879-15-020
    [8]Li Shan, Yang Shaoqiong, Jiang Nan. TRPIV MEASUREMENT OF DRAG-REDUCTION IN THE TURBULENT BOUNDARY LAYER OVER RIBLETS PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 183-192. DOI: 10.6052/0459-1879-12-262
    [9]Shidong Luo, Chunxiao Xu, Guixiang Cui. Direct numerical simulation of turbulent pipe flow controlled by MHD for drag reduction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 311-319. DOI: 10.6052/0459-1879-2007-3-2006-296
    [10]THE PHENOMENON OF DRAG REDUCTION IN FLOWS OF CLAY SUSPENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 522-531. DOI: 10.6052/0459-1879-1996-5-1995-365
  • Cited by

    Periodical cited type(8)

    1. 白建侠,赵凯芳,程肖岐,姜楠. 双振子同异步振动主动控制湍流边界层减阻实验研究. 力学学报. 2023(01): 52-61 . 本站查看
    2. 张鑫,王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报. 2023(02): 285-298 . 本站查看
    3. 杜海,张琴林,何玲艳,李奇轩. 覆盖多孔介质的圆柱减阻特性和机理研究. 南京航空航天大学学报. 2022(04): 611-622 .
    4. 王超伟,王康俊,李彪辉,姜楠. 湍流边界层等动量区演化机理的实验研究. 力学学报. 2021(03): 761-772 . 本站查看
    5. 高铨,邱翔,夏玉显,李家骅,刘宇陆. 基于LBM的壁湍流跨尺度能量传递结构统计. 力学学报. 2021(05): 1257-1267 . 本站查看
    6. 张艳涛,孙姣,高天达,范赢,陈文义. 固体颗粒对半球扰动尾迹影响的实验研究. 力学学报. 2020(03): 728-739 . 本站查看
    7. Ievgen Mochalin,林静雯,蔡建程,Volodymyr Brazhenko,鄂世举. 强吸气旋转圆筒壁面湍流边界层建模及计算. 力学学报. 2020(05): 1323-1333 . 本站查看
    8. 田海平,伊兴睿,钟山,姜楠,张山鹰. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究. 力学学报. 2020(06): 1666-1677 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1765) PDF downloads (143) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return