[1] | 刘坚, 雷济荣, 夏百战. 基于Chebyshev展开的区间穿孔板超材料分析. 力学学报, 2017, 49(1): 137-148 | [1] | (Liu Jian, Lei Jirong, Xia Baizhan.The interval analysis of multilayer-metamaterials with perforated apertures based on Chebyshev expansion. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 137-148 (in Chinese)) | [2] | Ren X, Das R, Tran P, et al.Auxetic metamaterials and structures: A review. Smart Materials and Structures, 2018, 27(2): 023001 | [3] | Poirier JP.Introduction to the physics of the earth's interior. [PhD Thesis]. London: Cambridge University Press, 2000 | [4] | Greaves GN, Greer AL, Lakes RS, et al.Poisson's ratio and modern materials. Nature Materials, 2011, 10(11): 823-837 | [5] | Huang C, Chen L.Negative Poisson's ratio in modern functional Materials. Advanced Materials, 2016, 28(37): 8079-8096 | [6] | Alderson A.A triumph of lateral thought. Chemistry & Industry, 1999, 10: 384-387 | [7] | Lakes R.Foam structures with a negative Poisson's ratio. Science, 1987, 235: 1038-1040 | [8] | Novak N, Vesenjak M, Ren Z.Auxetic cellular materials - A review. Journal of Mechanical Engineering, 2016(9): 485-493 | [9] | Alderson A, Rasburn J, Simon AB.An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties. Industrial & Engineering Chemistry Research, 2000, 39(3): 654-665 | [10] | Scarpa F.Auxetic materials for bioprostheses. Signal Processing Magazine, IEEE, 2008, 25(5): 128-126 | [11] | Xu B, Arias F, Brittain ST, et al.Making negative Poisson's ratio microstructures by soft lithography. Advanced Materials, 1999, 11(14): 1186-1189 | [12] | Zhang SL, Lai YC, He X, et al.Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Advanced Functional Materials, 2017, 27(25): 1616-1 | [13] | Li Q, Kuang Y, Zhu M.Auxetic piezoelectric energy harvesters for increased electric power output. AIP Advances, 2017, 7(1): 2158-3226 | [14] | Warmuth F.Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting. Smart Materials and Structures, 2017, 26(2): 025013 | [15] | Grima JN, Jackson R, Alderson A, et al.Do zeolites have negative Poisson's ratios? Advanced Materials, 2000, 12(24): 1912-1918 | [16] | Wang YC, Lakes R, Analytical parametric analysis of the contact problem of human buttocks and negative Poisson's ratio foam cushions. International Journal of Solids and Structures, 2002, 39(18): 4825-4838 | [17] | Yanhong M.A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Materials and Structures, 2013, 22(8): 084 | [18] | Bertoldi K, Reis PM, Willshaw S, et al.Negative Poisson's ratio behavior induced by an elastic instability. Advanced Materials, 2010, 22(3): 361-366 | [19] | Evans KE.Auxetic polymers. Membr. Technol, 2001, 137: 9 | [20] | Love AEH.A Treatise on the Mathematical Theory of Elasticity. New York: Dover Publications, 1944 | [21] | Ray H, Baughman JMS, Anvar A.Negative Poisson's ratios as a common feature of cubic metals. Nature, 1998, 392: 362 | [22] | Keskar NR, Chelikowsky JR.Negative Poisson ratios in crystalline SiO$_2$ from first-principles calculations. Nature, 1992, 358(6383): 222-224 | [23] | Wang H.$\delta $-Phosphorene: A two dimensional material with a highly negative Poisson's ratio. Nanoscale, 2017, 9(2): 850-855 | [24] | Sanchez VC.Negative Poisson's ratios in siliceous zeolite MFI-silicalite. The Journal of Chemical Physics, 2008, 128(18): 184503 | [25] | Kou LZ, Ma Y, Tang C, Auxetic and ferroelastic borophane: a novel 2D material with negative Possion's ratio and switchable dirac transport channels. Nano Letters, 2016, 16(12): 7910-7914 | [26] | Qin H.Negative Poisson's ratio in rippled graphene. Nanoscale, 2017, 9(12): 4135-4142 | [27] | Mortazavi B, Shahrokhi M, Makaremi M, et al.Anisotropic mechanical and optical response and negative Poisson's ratio in Mo$_{2}$C nanomembranes revealed by first-principles simulations. Nanotechnology, 2017, 28(11): 110705 | [28] | Yu L, Yan Q, Ruzsinszky A.Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides. Nature Communications, 2017, 8: 15224 | [29] | Qin R, Zheng J, Zhu W, Sign-tunable Poisson's ratio in semi-fluorinated graphene. Nanoscale, 2017, 9(1): 128-133 | [30] | Williams JL, Lewis JL.Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. Journal of Biomechanical Engineering, 1982, 104(1): 50-56 | [31] | Veronda DR, Westmann RA, Mechanical characterization of skin---Finite deformations. Journal of Biomechanics, 1970, 3(1): 111-124 | [32] | Lees C, Vincent JF, Hillerton JE.Poisson's ratio in skin. Bio-medical Materials and Engineering, 1991, 1(1): 19-23 | [33] | Baughman RH.Auxetic materials: Avoiding the shrink. Nature, 2003, 425(6959): 667-667 | [34] | Wang N.Stem cell mechanics: Auxetic nuclei. Nat Mater, 2014, 13(6): 540-542 | [35] | Yamamoto T, Schiessel H.Chromatin gels are auxetic due to cooperative nucleosome assembly and disassembly dynamics. EPL, 2017, 118(2): 28003 | [36] | Pagliara S.Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat Mater, 2014, 13(6): 638-644 | [37] | Yan Y, Yan L, Song LQ, et al.Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson's ratio. Acta Biomaterialia, 2017, 49: 192-203 | [38] | Christensen. Vibrant times for mechanical metamaterials. MRS Communications, 2015, FirstView: 1-10 | [39] | Schaedler TA, Jacobsen AJ, Torrents A, et al.Ultralight metallic microlattices. Science, 2011, 334(6058): 962 | [40] | Wang YC, Shen MW, Liao SM.Microstructural effects on the Poisson's ratio of star-shaped two-dimensional systems. Physica Status Solidi($B$) Basic Research, 2017, 254(12): 1770264 | [41] | Gibson LJ, Ashby MF, Schajer GS, et al.The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982, 382(1782): 25 | [42] | Masters IG, Evans KE, Models for the elastic deformation of honeycombs. Composite Structures, 1996, 35(4): 403-422 | [43] | Gibson LJ, Ashby MF.Cellular solids: Structure and properties. Oxford [etc.]: Pergamon, 1988 | [44] | Larsen UD, Sigmund O, Bouwstra S.Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 1997, 6(2): 106 | [45] | Grima JN.On the potential of connected stars as auxetic systems. Molecular Simulation, 2005, 31(13): 925-935 | [46] | Hu YL.A review on auxetic structures and polymeric materials. Scientific Research and Essays, 2010 | [47] | Saxena KK, Das R, Calius EP, Three decades of auxetics research-materials with negative Poisson's ratio: A review. Advanced Engineering Materials, 2016, 18(11): 1847-1870 | [48] | Evans KE, Nkansah MA, Hutchinson IJ, Auxetic foams: Modelling negative Poisson's ratios. Acta Metallurgica et Materialia, 1994, 42(4): 1289-1294 | [49] | Wang XT,. Mechanical properties of 3D re-entrant auxetic cellular structures. International Journal of Mechanical Sciences 2017, 131-132: 396-407 | [50] | Yang L. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. International Journal of Solids and Structures, 2015, 69-70: 475-490 | [51] | Fu MH, Chen Y, Hu LL, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Composite Structures, 2017, 160: 574-585 | [52] | Grima JN.Hexagonal honeycombs with zero Poisson's ratios and enhanced stiffness. Advanced Engineering Materials, 2010, 12(9): 855-862 | [53] | Gao Q, Wang L, Zhou Z, et al.Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb. Materials and Design, 2018, 139: 380-391 | [54] | Wang YL, Wang LM, Ma ZD, et al.Parametric analysis of a cylindrical negative Poisson's ratio structure. Smart Materials and Structures, 2016, 25(3): 35-38 | [55] | Grima JN, Pierre SF, Ruben G, et al.On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation. Physica Status Solidi($B$), 2008, 245(3): 521-529 | [56] | Grima JN, Evans KE.Auxetic behavior from rotating squares. Journal of Materials Science Letters, 2000, 19(17): 1563-1565 | [57] | Grima JN, Evans KE.Auxetic behavior from rotating triangles. Journal of Materials Science, 2006, 41(10): 3193-3196 | [58] | Joseph NG, Alderson A, Kenneth E.Negative Possion's ratio from rotating rectangles. Computational Methods in Science And Technology, 2004, 10(2): 8 | [59] | Grima JN, Zammit V, Gatt R, et al.Auxetic behaviour from rotating semi-rigid units. Physica Status Solidi($B$), 2007, 244(3): 866-882 | [60] | Alderson A, Evans KE.Rotation and dilation deformation mechanisms for auxetic behaviour in the $\alpha $-cristobalite tetrahedral framework structure. Physics and Chemistry of Minerals, 2001, 28(10): 711-718 | [61] | Rafsanjani A, Pasini D, Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 2016, 9: 291-296 | [62] | Lakes R.Deformation mechanisms in negative Poisson's ratio materials: structural aspects. Journal of Materials Science, 1991, 26(9): 2287-2292 | [63] | Grima JN, Gatt R, Farrugia PS, On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi($B$), 2008, 245(3): 511-520 | [64] | Prall D, Lakes RS, Properties of a chiral honeycomb with a poisson's ratio of -1. International Journal of Mechanical Sciences, 1997, 39(3): 305-314 | [65] | Mizzi L.Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems. Composites Part B: Engineering, 2015, 80: 84-91 | [66] | Ha CS, Plesha ME, Lakes RS.Chiral three-dimensional lattices with tunable Poisson's ratio. Smart Materials and Structures, 2016, 25(5): 054005 | [67] | Lu ZX, Wang QS, Li X, et al.Elastic properties of two novel auxetic 3D cellular structures. International Journal of Solids and Structures, 2017, 124: 46-56 | [68] | Fu M, Liu F, Hu L.A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology, 2018, 160: 111-118 | [69] | Rossiter J, TakashimaK, Scarpa F, et al. Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Materials and Structures, 2014, 23(4): 045007 | [70] | Grima JN.Tailoring graphene to achieve negative Poisson's ratio properties. Advanced Materials, 2015, 27(8): 1455-1459 | [71] | Javid F, Smith-Roberge E, Innes MC, et al.Dimpled elastic sheets: A new class of non-porous negative Poisson's ratio materials. Scientific Reports, 2015, 5(1): 18373 | [72] | 李笑, 李明. 折纸及其折痕设计研究综述. 力学学报, 2018, 50(3): 467-476 | [72] | (Li Xiao, Li Ming.A review of origami and its crease design. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese)) | [73] | Liu SC, Lu GX, Chen Y, et al.Deformation of the Miura-ori patterned sheet. International Journal of Mechanical Sciences, 2015, 99: 130-142 | [74] | Hou Y, Neville R, Scarpa F, et al.Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Composites Part B: Engineering, 2014, 59: 33-42 | [75] | Neville RM, Scarpa F, Pirrera A.Shape morphing Kirigami mechanical metamaterials. Scientific Reports, 2016, 6: 31067 | [76] | Chen YJ, Scarpa F, Remillat C, et al.Curved Kirigami SILICOMB cellular structures with zero Poisson's ratio for large deformations and morphing. Journal of Intelligent Material Systems and Structures, 2013, 25(6): 731-743 | [77] | Zhang ZK, Hu H, Liu SR, et al.Study of an auxetic structure made of tubes and corrugated sheets. Physica Status Solidi($B)$, 2013, 250(10): 1996-2001 | [78] | Grima JN, Gatt R.Perforated sheets exhibiting negative Poisson's ratios. Advanced Engineering Materials, 2010, 12(6): 460-464 | [79] | 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展. 机械工程学报, 2018, 54(13): 1-14 | [79] | (Yu Jingjun, Xie Yan, Pei Xu.State-of-art of metamaterials with negative Poisson's ratio. Journal of Mechanical Engineering, 2018, 54(13): 1-14 (in Chinese)) | [80] | Grima JN, Mizzi L, Azzopardi KM, et al.Auxetic perforated mechanical metamaterials with randomly oriented cuts. Advanced Materials, 2016, 28(2): 385-389 | [81] | Tang Y, Yin J.Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extreme Mechanics Letters, 2017, 12: 77-85 | [82] | Grima JN, Gatt R, Ellul B, et al.Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations. Journal of Non-Crystalline Solids, 2010, 356(37-40): 1980-1987 | [83] | Ravirala N, Alderson A, Alderson KL.Interlocking hexagons model for auxetic behaviour. Journal of Materials Science, 2007, 42(17): 7433-7445 | [84] | Evans KE, Alderson A.Auxetic materials: Functional materials and structures from lateral thinking. Advanced Materials, 2000, 12(9): 617-628 | [85] | Evans KE, Caddock BD.Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation. Journal of Physics D: Applied Physics, 1989, 22(12): 1883 | [86] | Alderson A, Evans KE.Modelling concurrent deformation mechanisms in auxetic microporous polymers. Journal of Materials Science, 1997, 32(11): 2797-2809 | [87] | Alderson KL, Alderson A, Smart G, et al.Auxetic polypropylene fibres: Part 1 - Manufacture and characterisation. Plastics, Rubber and Composites, 2002, 31(8): 344-349 | [88] | Ravirala N, Alderson KL, Davies PJ, et al.Negative Poisson's ratio polyester fibers. Textile Research Journal, 2006, 76(7): 540-546 | [89] | Miller W, Hook PB, Smith CW, et al.The manufacture and characterisation of a novel, low modulus, negative Poisson's ratio composite. Composites Science and Technology, 2009, 69(5): 651-655 | [90] | Wright JR, Burns MK, Edward J, et al.On the design and characterisation of low-stiffness auxetic yarns and fabrics. Textile Research Journal, 2012, 82(7): 645-654 | [91] | Miller W, Ren Z, Smith CW, et al.A negative Poisson's ratio carbon fibre composite using a negative Poisson's ratio yarn reinforcement. Composites Science and Technology, 2012, 72(7): 761-766 | [92] | 史炜, 杨伟, 李忠明等. 负泊松比材料研究进展. 高分子通报, 2003(6): 48-57 | [92] | (Shi Wei, Yang Wei, Li Zhongming, et al.Advances in negative Poisson's ratio materials. Polymer Bulletin, 2003(6): 48-57 (in Chinese)) | [93] | 常玉萍, 程锡慧, 马丕波等. 具有负泊松比效应经编织物的制备及其力学性能. 纺织学报, 2015(8): 43-48 | [93] | (Chang Yuping, Cheng Xihui, Ma Pibo, et al.Manufacture and mechanical properties of negative Poisson's ratio warp knitted fabrics. Journal of Textile Research, 2015(8): 43-48 (in Chinese)) | [94] | Blaga M, Ciobanu AR, Pavko-Cuden A 等. 在电脑横机上编织负泊松比可折叠纬编针织结构. 国际纺织导报, 2014(6): 54-56 | [94] | (Blaga M, Ciobanu AR, Pavko-Cuden A, et al. Production of foldable weft knitted structures with auxetic potential on electronic flat knitting machines. China Textile Leader, 2014(6): 54-56 (in Chinese)) | [95] | 葛朝阳, 胡红. 一种新型三维负泊松比织物结构的压缩变形分析. 东华大学学报(自然科学版), 2014(5): 543-548 | [95] | (Ge Zhaoyang, Hu Hong.Compression deformation analysis of an Innovative 3D fabric structure with Negative poisson's ratio. Journal of Donghua University (Natural Science), 2014 (5): 543-548 (in Chinese)) | [96] | 常玉萍, 马丕波, 钟文鑫等. 基于经编网眼结构的负泊松比织物设计. 纺织学报, 2016 (2): 44-49 | [96] | (Chang Yuping, Ma Pibo, Zhong Wenxin, et al.Design of auxetic fabrics based on warp-knitted net structure. Journal of Textile Research, 2016 (2): 44-49 (in Chinese)) | [97] | 常玉萍, 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能. 纺织学报, 2017 (9): 59-65 | [97] | (Chang Yuping, Ma Pibo.Model and tensile performance of negative Poisson's ratio warp-knitted spacer structures. Journal of Textile Research, 2017 (9): 59-65 (in Chinese)) | [98] | 马丕波, 常玉萍, 蒋高明. 负泊松比针织结构及其应用. 纺织导报, 2015(7): 47-50 | [98] | (Ma Pibo, Chang Yuping, Jiang Gaoming.Knitted structures with negative Poisson's ratio. China Textile Leader, 2015(7): 47-50 (in Chinese)) | [99] | 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用. 力学进展, 2011, 41(3): 335-350 | [99] | (Yang Zhichun, Deng Qingtian.Mechanical property and application of materials and structures with nagative possion's ratio. Advances in Mechanics, 2011, 41(3): 335-350 (in Chinese)) | [100] | Boakye A, Chang YP, Rafiu KR, et al.Design and manufacture of knitted tubular fabric with auxetic effect. Journal of the Textile Institute, 2017: 1-7 | [101] | Ali M, Zeeshan M, Ahmed S, et al.Development and comfort characterization of 2D-Woven auxetic fabric for wearable and medical textile applications. Clothing and Textiles Research Journal, 2018, 36(3): 199-214 | [102] | 冯含笑, 魏孟媛, 薛文良等. 负泊松比纺织材料的研究现状与应用前景. 产业用纺织品, 2017(6): 1-5 | [102] | (Feng Hanxiao, Wei Mengyuan, Xue Wenliang, et al.Research status and application prospect of negative Poission's ratio textile materials. Technical Textiles, 2017(6): 1-5 (in Chinese)) | [103] | Smith CW, Grima JN, Evans KE.A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Materialia, 2000, 48(17): 4349-4356 | [104] | Grima JN, Ravirala, Galea R, et al.Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour. Physica Status Solidi($B)$, 2011, 248(1): 117-122 | [105] | Gaspar N, Smith CW, Alderson A, et al.A generalised three-dimensional tethered-nodule model for auxetic materials. Journal of Materials Science, 2011, 46(2): 372-384 | [106] | Dirrenberger J, Forest S, Jeulin D.Effective elastic properties of auxetic microstructures: anisotropy and structural applications. International Journal of Mechanics and Materials in Design, 2013, 9(1): 21-33 | [107] | Pasternak E, Dyskin AV.Materials and structures with macroscopic negative Poisson's ratio. International Journal of Engineering Science, 2011, 52: 103-114 | [108] | Rodney D, Gadot B, Martinez OR, et al.Reversible dilatancy in entangled single-wire materials. Nat Mater, 2016, 15(1): 72-77 | [109] | Friis EA, Lakes RS, Park JB.Negative Poisson's ratio polymeric and metallic foams. Journal of Materials Science, 1988, 23(12): 4406-4414 | [110] | Li D, Dong L, Lakes RS.The properties of copper foams with negative Poisson's ratio via resonant ultrasound spectroscopy. Physica Status Solidi($B)$, 2013, 250(10): 1983-1987 | [111] | Zhang YN, Wu RQ, Schurter HM.Understanding of large auxetic properties of iron-gallium and iron-aluminum alloys. Journal of Applied Physics, 2010, 108(2): 023513 | [112] | Schwerdtfeger J, Schury F, Stingl M, et al.Mechanical characterisation of a periodic auxetic structure produced by SEBM. Physica Status Solidi($B)$, 2012, 249(7): 1347-1352 | [113] | Mitschke H, Schwerdtfeger J, Schury F, et al.Finding auxetic frameworks in periodic tessellations. Advanced Materials, 2011, 23(22-23): 2669-2674 | [114] | Dirrenberger J, Forest S, Jeulin D.Elastoplasticity of auxetic materials. Computational Materials Science, 2012, 64: 57-61 | [115] | Taylor M, Francesconi L, Gerendás M, et al.Low porosity metallic periodic structures with negative Poisson's ratio. Advanced Materials, 2014, 26(15): 2365-2370 | [116] | Ren X, Shen JH, Ghaedizadeh A, et al.Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Materials and Structures, 2015, 24(9): 95016 | [117] | Ren X, Shen JH, Ghaedizadeh A, et al.A simple auxetic tubular structure with tuneable mechanical properties. Smart Materials and Structures, 2016, 25(6): 065012 | [118] | Hiller J, Lipson H.Tunable digital material properties for 3D voxel printers. Rapid Prototyping Journal, 2010, 16(4): 241-247 | [119] | Wang K, Chang YH, Chen YW, et al.Designable dual-material auxetic metamaterials using three-dimensional printing. Materials and Design, 2015, 67: 159-164 | [120] | Vogiatzis P, Chen SK, Wang X, et al.Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method. CAD Computer Aided Design, 2017, 83: 15-32 | [121] | Alderson KL, Simkins VR, Coenen VL, et al.How to make auxetic fibre reinforced composites. Physica Status Solidi($B)$, 2005, 242(3): 509-518 | [122] | Miki M, Murotsu Y.The peculiar behavior of the Poisson's ratio of laminated fibrous composites. JSME International Journal. Ser.1, Solid Mechanics, Strength of Materials, 1989, 32(1): 67-72 | [123] | Milton GW.Composite materials with poisson's ratios close to -1. Journal of the Mechanics and Physics of Solids, 1992, 40(5): 1105-1137 | [124] | Herakovich CT.Composite laminates with negative through-the-thickness Poisson's ratios. Journal of Composite Materials, 1984, 18(5): 447-455 | [125] | Ghaznavi A, hariyat M. Non-linear layerwise dynamic response analysis of sandwich plates with soft auxetic cores and embedded SMA wires experiencing cyclic loadings. Composite Structures, 2017, 171: 185-197 | [126] | Nkansah MA, Evans KE, Hutchinson IJ.Modelling the effects of negative Poisson's ratios in continuous-fibre composites. Journal of Materials Science, 1993, 28(10): 2687-2692 | [127] | Zorzetto L, Ruffoni D.Re-entrant inclusions in cellular solids: From defects to reinforcements. Composite Structures, 2017, 176: 195-204 | [128] | Zahra T, Dhanasekar M.Characterisation of cementitious polymer mortar-Auxetic foam composites. Construction and Building Materials, 2017, 147: 143-159 | [129] | Hu JY, Zhou Y, Liu ZS, et al.Pattern switching in soft cellular structures and hydrogel-elastomer composite materials under compression. Polymers, 2017, 9(6): 229 | [130] | Carneiro VH, Meireles J, Puga H.Auxetic materials-A review. Materials Science-Poland, 2013, 31(4): 561-571 | [131] | Yang W, Li ZM, Shi W, et al.Review on auxetic materials. Journal of Materials Science, 2004, 39(10): 3269-3279 | [132] | Lakes RS. Elms K.Indentability of conventional and negative Poisson's ratio foams. Journal of Composite Materials, 1993, 27(12): 1193-1202 | [133] | Critchley R, Corni I, Wharton JA, et al.A review of the manufacture, mechanical properties and potential applications of auxetic foams. Physica Status Solidi($B)$, 2013, 250(10): 1963-1982 | [134] | Yang S, Wang D, Gao RJ, et al.A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Advances in Mechanical Engineering, 2013(2): 496-500 | [135] | Bezazi A, Boukharouba W, Scarpa F.Mechanical properties of auxetic carbon/epoxy composites: Static and cyclic fatigue behaviour. Physica Status Solidi($B)$, 2009, 246(9): 2102-2110 | [136] | Choi JB, Lakes RS.Non-linear properties of metallic cellular materials with a negative Poisson's ratio. Journal of Materials Science, 1992, 27(19): 5375-5381 | [137] | Donoghue JP, Alderson KL, Evans KE.The fracture toughness of composite laminates with a negative Poisson's ratio. Physica Status Solidi($B)$, 2009, 246(9): 2011-2017 | [138] | Lim TC, Acharya UR.Longitudinal modulus of semi-auxetic unidirectional fiber composites. Journal of Reinforced Plastics and Composites, 2010, 29(10): 1441-1445 | [139] | Yang S, Chalivendra VB, Kim YK.Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites. Composite Structures, 2017, 168: 120-129 | [140] | Alderson A, Alderson KL, Chirima G, et al.The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Composites Science and Technology, 2010, 70(7): 1034-1041 | [141] | Alderson A, Rasburn J, Evans KE, et al.Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties. Membrane Technology, 2001, 2001(137): 6-8 | [142] | Alderson A, Rasburn J, Evans KE.Mass transport properties of auxetic (negative Poisson's ratio) foams. Physica Status Solidi($B)$, 2007, 244(3): 817-827 | [143] | Grima JN. Auxtic Metamaterials. France: Strasbourg, 2010 | [144] | Chen Q, Pugno NM.In-plane elastic buckling of hierarchical honeycomb materials. European Journal of Mechanics-A/Solids, 2012, 34: 120-129 | [145] | May PR, Fuster JM, Haber J, et al.Woodpecker drilling behavior: An endorsement of the rotational theory of impact brain injury. Archives of Neurology, 1979, 36(6): 370-373 | [146] | Imbalzano G, Tran P, Ngo TD, et al.A numerical study of auxetic composite panels under blast loadings. Composite Structures, 2016, 135: 339-352 | [147] | Imbalzano G, Linforth S, Ngo TD, et al.Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Composite Structures, 2017, 183: 242-261 | [148] | Strek T, Jopek H.Effective mechanical properties of concentric cylindrical composites with auxetic phase. Physica Status Solidi($B)$, 2012, 249(7): 1359-1365 | [149] | Grujicic M, Galgalikar R, Snipes JS.Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwich-structures. Materials and Design, 2013, 51: 113-130 | [150] | Strek T, Jopek H, Bogdan T, et al.Computational analysis of sandwich-structured composites with an auxetic phase. Physica Status Solidi($B)$, 2014, 251(2): 354-366 | [151] | Alderson A, Alderson KL.Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 565-575 | [152] | Heo H, Ju J, Kim DM.Compliant cellular structures: Application to a passive morphing airfoil. Composite Structures, 2013, 106: 560-569 | [153] | Jacobs S, Coconnier C, DiMaio D, et al. Deployable auxetic shape memory alloy cellular antenna demonstrator: Design, manufacturing and modal testing. Smart Materials and Structures, 2012, 21(7): 075013 | [154] | Prawoto Y.Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio. Computational Materials Science, 2012, 58: 140-153 | [155] | Avellaneda M, Swart PJ.Calculating the performance of 1--3 piezoelectric composites for hydrophone applications: An effective medium approach. The Journal of the Acoustical Society of America, 1998, 103(3): 1449-1467 | [156] | Nakamura M.Fundamental properties of intermetallic compounds. MRS Bulletin, 2013, 20(8): 33-39 | [157] | Ali MN, Rehman IU.An auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer: Development and in vitro mechanical analysis. Journal of Materials Science: Materials in Medicine, 2011, 22(11): 2573-2581 | [158] | Ali MN, Busfield JC, Rehman I.Auxetic oesophageal stents: structure and mechanical properties. Journal of Materials Science: Materials in Medicine, 2014, 25(2): 527-553 | [159] | Kuribayashi K, Tsuchiya K, You Z, et al.Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Science and Engineering: $A$, 2006, 419(1-2): 131-137 | [160] | Kuribayashi K, You Z.Deployable stent. Google Patents, 2006 | [161] | Ley TJ.Stent configurations. Google Patents, 2002 | [162] | Burriesci G, Bergamasco G.Annuloplasty prosthesis with an auxetic structure. Google Patents, 2011 | [163] | Jiang Y, Liu Z, Matsuhisa N, et al.Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Advanced Materials, 2018, 30(12): 0935-9648 | [164] | Gatt R, Mizzi L, Azzopardi JI, et al.Hierarchical auxetic mechanical metamaterials. Scientific Reports, 2015, 5: 8395 | [165] | Bhullar SK, Ahmed JKF, Jun MBG.Design and fabrication of stent with negative Poisson's ratio. International Journal of Mechanical, Aerospace,Industrial and Mechatronics Engineering, 2014(2): 213-219 | [166] | Janus-Michalska M, Jasinska D, Smardzewski J.Comparison of contact stress distribution for foam seat and seat of auxetic spring skeleton. International Journal of Applied Mechanics and Engineering, 2013, 18(1): 18 | [167] | Foster L, Peketi P, Allen T, et al.Application of auxetic foam in sports helmets. Applied Sciences Switzerland, 2018, 8(3): 354 | [168] | Alderson K, Alderson A, Anand S, et al.Auxetic warp knit textile structures. Physica Status Solidi($B)$, 2012, 249(7): 1322-1329 | [169] | 葛朝阳. 三维负泊松比织物结构的设计制造和变形机理研究. [博士论文]. 上海:东华大学, 2014 | [169] | (Ge Zhaoyang.Design, manufacture and deformation mechanism of a three-dimensuional structure with negative Possion's ratio. [PhD Thesis]. Shanghai: Donghua University, 2014 (in Chinese)) | [170] | 亓昌, 安文姿, 杨姝. 负泊松比安全带织带乘员碰撞保护性能的FE仿真. 汽车安全与节能学报, 2013, 4(3): 215-222 | [170] | (Qi Chang, An Wenzi, Yang Shu.FE simulation of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing. Journal of Automotive Safety and Energy, 2013, 4(3): 215-222 (in Chinese)) | [171] | Avellaneda M, Swart PJ.Calculating the performance of 1-3 piezocomposites for hydrophone applications: An effective medium approach. Journal of the Acoustica1 Society of America, 1998, 103: 1449-1467 | [172] | Baughman RH, Shacklette JM, Zakhidov AA, et al.Negative Poisson's ratios as a common feature of cubic metals. Nature, 1998, 392: 362-365 | [173] | 黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析. 力学学报, 2017, 49(4): 758-762 | [173] | (Huang Chunyang, Tang Shan, Peng Xianghe.Study of surface instability about hyperelastic films on auxetic substrates under compression. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762 (in Chinese)) | [174] | Choi JB.Design of a fastener based on negative Poisson's ratio foam. Cellular Polymers, 1991, 10: 8 | [175] | Grima JN, Gatt R.A novel chemo-mechanical process for making auxetic foams and for their reconversion to conventional form. [PhD Thesis]. University of Malta, 2009 | [176] | Ren X, Shen JH, Tran P, et al.Auxetic nail: Design and experimental study. Composite Structures, 2018, 184: 288-298 | [177] | Nakamura M.Fundamental properties of intermetallic cornpounds. MRS Bulletin, 1995, 20(8): 33-39 | [178] | 颜芳芳, 徐晓东. 负泊松比柔性蜂窝结构在变体机翼中的应用. 中国机械工程, 2012(5): 542-546 | [178] | (Yan Fangfang, Xu Xiaodong.Negative Poisson's ratio honeycomb structure and its applications in structure design of morphing aircraft. China Mechanical Engineering, 2012(5): 542-546 (in Chinese)) | [179] | 吴秉鸿, 张相闻, 杨德庆. 负泊松比超材料隔振基座的实船应用分析. 船舶工程, 2018(2): 55-62 | [179] | (Wu Binghong, Zhang Xiangwen, Yang Deqing.Real ship application analysis of vibration isolation base made by auxetic metamaterials. Ship Engineering, 2018 (2): 55-62 (in Chinese)) | [180] | 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构. 爆炸与冲击, 2015(2): 243-248 | [180] | (Yang Deqing, Ma Tao, Zhang Genglin.A novel auxetic broadside defensive structure for naval ships. Explosion and Shock Waves, 2015(2): 243-248 (in Chinese)) | [181] | 韦璇, 马玉璞, 孙社营. 舰船声隐身技术和材料的发展现状与展望. 舰船科学技术, 2006(6): 22-27 | [181] | (Wei Xuan, Ma Yupu, Sun Sheying.The present status and prospect of acoustic stealth techniques and materials on warships. Ship Science and Technology, 2006 (6): 22-27 (in Chinese)) | [182] | 杨呜波, 阳霞, 李忠明等. 负泊松比材料的结构与性能. 高分子材料科学与工程, 2001(6): 15-18,24 | [182] | (Yang Mingbo, Yang Xia, Li Zhongming, et al.The Structure and properties of the material with negative Possion's ratio. Polymer Materials Science & Engineering, 2001(6): 15-18,24 (in Chinese)) | [183] | Liu YP, Hu H, Lam JKC.Negative Poisson's ratio weft-knitted fabrics. Textile Research Journal, 2010, 80(9): 856-863 | [184] | 孔凡臣, 孙建伟, 张邦成等. 基于四杆曲柄滑块机构的可展机构设计. 长春工业大学学报, 2018(1): 1-7 | [184] | (Kong Fanchen, Sun Jianwei, Zhang Bangcheng, et al.Design of deployable mechanisms based on four-bar slider-crank mechanism. Journal of Changchun University of Technology, 2018(1): 1-7 (in Chinese)) | [185] | Mori O, Sawada H, Funase R, et al.First solar power sail demonstration by IKAROS. Transactions of the Japan Society for Aeronautical & Spaceences Space Technology Japan, 2010, 8(27): 25-31 | [186] | Tsuda Y, Mori O, Funase R, et al.Flight status of IKAROS deep space solar sail demonstrator. Acta Astronautica, 2011, 69(9-10): 833-840 | [187] | O J.Cushioned earphones. US: US6412593B1, 2002 | [188] | Zhengdong M.Three-dimensional auxetic structures and applications thereof. US: US7910193B2, 2011 | [189] | Bianchi M, Scarpa F, Smith CW.Shape memory behaviour in auxetic foams: Mechanical properties. Acta Materialia, 2010, 58(3): 858-865 | [190] | Hassan MR, Scarpa F, Ruzzene M. Smart shape memory alloy chiral honeycomb. Materials Science and Engineering, 2008, 481-482: 654-657 | [191] | Sun Y, Pugno N.Hierarchical fibers with a negative poisson's ratio for tougher composites. Materials, 2013, 6(2): 699-712 | [192] | Tang YC, Lin GJ, Han L, et al.Design of hierarchically cut hinges for highly stretchable and reconfigurable metamaterials with enhanced strength. Advanced Materials, 2015, 27(44): 7181-7190 | [193] | Billon K, Zampetakis I, Scarpa F.Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Composite Structures, 2017, 160: 1042-1050 | [194] | Ren X, Shen JH, Ghaedizadeh A, et al.Numerical simulations of 3D metallic auxetic metamaterials in both compression and tension. Applied Mechanics and Materials, 2016, 846: 565-570 | [195] | Bertoldi K.Harnessing instabilities to design tunable architected cellular materials//Annual Review of Materials Research, 2017: 51-61 | [196] | Wu JL, Luo Z, Li H.Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Computer Methods in Applied Mechanics and Engineering, 2017, 319: 414-441 | [197] | Clausen A, Wang FW, Jensen JS, et al.Topology optimized architectures with programmable Poisson's ratio over large deformations. Advanced Materials, 2015, 27(37): 5523-5527 | [198] | Bruggi M, Zega V, Corigliano A.Synthesis of auxetic structures using optimization of compliant mechanisms and a micropolar material model. Structural and Multidisciplinary Optimization, 2017, 55(1): 1-12 | [199] | Wang ZP, Poh LH, Dirrenberger J, et al.Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 250-271 | [200] | Xie YM, Steven GP.A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885-896 | [201] | Xie YM, Steven GP.Basic evolutionary structural optimization, in Evolutionary Structural Optimization. London: Springer, 1997: 12-29 | [202] | Yang XY, Xie YM.Bidirectional evolutionary method for stiffness optimization. AIAA Journal, 1999, 37(11): 1483-1488 | [203] | Huang X, Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049 | [204] | Ai L, Gao XL.Metamaterials with negative Poisson's ratio and non-positive thermal expansion. Composite Structures, 2017, 162: 70-84 | [205] | Ng CK, Saxena KK, Das R, et al.On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials. Journal of Materials Science, 2017, 52(2): 899-912 | [206] | Hewage T, Alderson A, Alderson KL.Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties. Adv Mater, 2016, 28(46): 10323-10332 |
|