EI、Scopus 收录
中文核心期刊
Xingtian Liu, Shuhai Chen, Jiadeng Wang, Junfeng Shen. ANLYSIS OF THE DYNAMIC BEHAVIOR AND PERFORMANCE OF A VIBRATION ISOLATION SYSTEM WITH GEOMETRIC NONLINEAR FRICTION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 371-379. DOI: 10.6052/0459-1879-18-302
Citation: Xingtian Liu, Shuhai Chen, Jiadeng Wang, Junfeng Shen. ANLYSIS OF THE DYNAMIC BEHAVIOR AND PERFORMANCE OF A VIBRATION ISOLATION SYSTEM WITH GEOMETRIC NONLINEAR FRICTION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 371-379. DOI: 10.6052/0459-1879-18-302

ANLYSIS OF THE DYNAMIC BEHAVIOR AND PERFORMANCE OF A VIBRATION ISOLATION SYSTEM WITH GEOMETRIC NONLINEAR FRICTION DAMPING

  • Received Date: September 09, 2018
  • In vibration isolation field, nonlinear vibration isolation system catch more attention than linear system because of the better vibration isolation performance. In this paper, a novel nonlinear vibration isolation system with geometric nonlinear friction damping is proposed by add two friction damper that perpendicular to the movement direction of the isolated object. The absolute and relative displacement transmissibility of such kind of vibration isolation system are studied in this paper. Different from the friction damper which usually assuming that the friction force is constant, the friction force studied in this paper is proportional to the displacement of the isolated mass by configuring two linear friction dampers perpendicular to the moving direction of the mass. The mathematical model of the friction damping and the forced vibration of the system are established. The dynamic equation is solved by using Harmonic Balance Method (HBM) subsequently by making some simplification. The result solved by HBM is verified numerically. The performance of the nonlinear vibration isolation system is compared with that of a linear one by the performance index defined by absolute and relative transmissibility. The geometric nonlinear friction can offer small or large friction damping depends on the relative displacement, therefore, the nonlinear friction force can improve the transmissibility for both absolute and relative displacement at resonance and the higher frequencies region if the damping values are chosen carefully which surpass a traditional Kevin vibration isolator model. Meanwhile, the nonlinear vibration isolation system can enlarge the application region for different excitation amplitude and avoid the system failure though the responses of the isolated mass is amplified at low frequency. The vibration isolation system with the configuration of the friction damper proposed is very suitable for both resonance and higher frequencies vibration control. The conclusions given are of importance when design and choosing the friction damping parameters.
  • [1] Harris C, Piersol A . Shock and Vibration Handbook. New York: McGraw-Hill, 2002
    [2] Rivin E . Passive Vibration Isolation. New York: ASME Press, 2003
    [3] Ibrahim R . Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 2008,314(3-5):371-452
    [4] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [4] ( Cao Dengqing, Bai Kunchao, Ding Hu , et al. Advances in dynamics and vibration control of large scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [5] Carrella A, Brennan M, Waters T . Static analysis of a passive vibration isolator with quasi-zero stiffness characteristic. Journal of Sound and Vibration, 2007,301(3-5):678-689
    [6] Kovacic I, Brennan M, Waters T . A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 2008,315(3):700-711
    [7] Mizuno T, Toumiya T, Takasaki M , Vibration isolation system using negative stiffness. Japan Society of Mechanical Engineers International Journal Series C, 2003,46(3):807-812
    [8] Zhou N, Liu K . A tunable high-static-low-dynamic stiffness vibration isolator. Journal of Sound and Vibration, 2010,329(9):1254-1273
    [9] Carrella A, Brennan M, Waters TP , et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. Journal of Sound and Vibration, 2008,315(3):712-720
    [10] Zhu T, Benjamin C, Robertson W , et al. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. Journal of Sound and Vibration, 2015,358:48-73
    [11] Le T, Kyoung K . Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat. Journal of Sound and Vibration, 2014,333(5):1245-1268
    [12] Sun X, Jing X . A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mechanical Systems and Signal Processing, 2016,80:166-188
    [13] Sun X, Jing X . Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mechanical Systems and Signal Processing, 2015, 62-63:149-163
    [14] Araki Y, Asai T, Masui T . Vertical vibration isolator having piecewise-constant restoring force. Earthquake Engineering and Structural Dynamics, 2019,38(13):1505-1523
    [15] 高雪, 陈前, 刘先斌 . 一类分段光滑隔振系统的非线性动力学设计方法. 力学学报, 2016,48(1):192-200
    [15] ( Gao Xue, Chen Qian, Liu Xianbin . Nonlinear dynamics design for piecewise smooth vibration isolation system. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1):192-200 (in Chinese))
    [16] 陆泽琦, 陈立群 . 非线性被动隔振的若干进展. 力学学报, 2017,49(3):550-564
    [16] ( Lu Zeqi, Chen Liqun . Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):550-564 (in Chinese))
    [17] Lu Z, Yang T, Brennan M , et al. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. ASME Journal of Applied Mechanics, 2017,84(2):021001
    [18] Ruzicka J, Derby T . Influence of damping in vibration isolation. Washington, DC: Shock and Vibration Information Center (Defense), 1971
    [19] Ravindra B, Mallik A . Performance of non-linear vibration isolators under harmonic excitation. Journal of Sound and Vibration, 1994,170(3):325-337
    [20] Ravindra B, Mallik A . Hard Duffing-type vibration isolator with combined coulomb and viscous damping. International Journal of Non-linear Mechanics, 1993,28(4):427-440
    [21] Thaijaroen W, Harrison A . Nonlinear dynamic modelling of rubber isolators using six parameters based on parabolic spring, springpot, and smooth-slip friction element. Polymer Testing, 2010,29(7):857-865
    [22] Yang P, Yang J, Ding J . Dynamic transmissibility of a complex nonlinear coupling isolator. Tsinghua Science and Technology, 2006,11(5):538-542
    [23] Peng ZK, Lang ZQ, Jing XJ , et al. The transmissibility of vibration isolators with a nonlinear antisymmetric damping characteristic. Journal of Vibration and Acoustics, 2010,132(1):014501
    [24] 彭志科, 郎自强, 孟光 等. 一类非线性隔振器振动传递特性分析. 动力学与控制学报, 2011,9(4):314-320
    [24] ( Peng Zhike, Lang Ziqiang, Meng Guang , et al. Analysis on transmissibility for a class of nonlinear vibration isolators. Journal of Dynamics and Control, 2011,9(4):314-320 (in Chinese))
    [25] Peng ZK, Meng G, Lang ZQ , et al. Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method. International Journal of Non-Linear Mechanics, 2012,47(10):1073-1080
    [26] Kovacic I, Milovanovic Z, Brennan M . On the relative and absolute transmissibility of a vibration isolation system subjected to base excitation//XXI Conference with International Participation, Noise and Vibration, Serbia, Tara, 2008
    [27] López I, Busturia J, Nijmeijer H . Energy dissipation of a friction damper. Journal of Sound and Vibration, 2003,278(3):539-561
    [28] Berger E . Friction modeling for dynamic system simulation. Applied Mechanics Review, 2002,55(6):535-577
    [29] Stein G, Zahoransky R, Mucka P . On dry friction modelling and simulation in kinematically excited oscillatory systems. Journal of Sound and Vibration, 2008,311(1-2):74-96
    [30] Zhao D, Zhang W, Ma R et al. Research on a new damper and its application in vibration control of a building. Industrial Construction, 2006,36(2):1-5
    [31] Tadjbakhsh I, Lin B . Displacement-proportional friction (DPF) in base isolation. Earthquake Engineering and Structural Dynamics, 1987,15(7):799-813
    [32] Ferri A . Friction Damping and Isolation Systems. Journal of Vibration and Acoustics, 1995,117(B):196-206
    [33] Ferri A, Whiteman W . Free response of a system with negative viscous damping and displacement-dependent dry friction damping. Journal of Sound and Vibration, 2007,306(3-5):400-418
    [34] Whiteman W, Ferri A . Displacement-dependent dry friction damping of a beam-like structure. Journal of Sound and Vibration, 1996,198(3):313-329
    [35] Tang B, Brennan M . A comparison of two nonlinear damping mechanisms in a vibration isolator. Journal of Sound and Vibration, 2013,332(3):510-520
  • Related Articles

    [1]Zhao Feng, Kang Yanhong, Cao Xinyu, Du Wenliao, Cao Shuqian. SINGLE-STAGE AND MULTI-STAGE CONSECUTIVE CONSTANT QUASI-ZERO STIFFNESS FOR VIBRATION ISOLATION AT LOW FREQUENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1-16. DOI: 10.6052/0459-1879-25-046
    [2]Xu Huidong, Wang Yiping, He Dongping, Zhou Biliu, Zhang Wei. RESEARCH ON THE VIBRATION REDUCTION CHARACTERISTICS OF ROLLING MILL ROLL SYSTEM WITH ACTIVE AND PASSIVE DAMPING SHOCK ABSORBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2713-2730. DOI: 10.6052/0459-1879-24-079
    [3]Fan Dongzhi, Ling Peng, Ma Hongye, Pan Xiagui, Yan Bo. THEORETICAL MODEL AND LOW-FREQUENCY VIBRATION ISOLATION CHARACTERISTICS OF STACKED MIURA-ORI VIBRATION ISOLATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1775-1783. DOI: 10.6052/0459-1879-23-548
    [4]Niu Jiangchuan, Zhang Wanjie, Shen Yongjun, Wang Jun. SUBHARMONIC RESONANCE OF QUASI-ZERO-STIFFNESS VIBRATION ISOLATION SYSTEM WITH DRY FRICTION DAMPER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101. DOI: 10.6052/0459-1879-21-680
    [5]Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. DOI: 10.6052/0459-1879-20-147
    [6]Zhongwen Pan, Jianwei Xing, Lei Wang, Shenyan Chen. RESEARCH ON WHOLE-SPACECRAFT VIBRATION ISOLATION BASED ON PARALLEL LOAD-BEARING AND DAMPING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 364-370. DOI: 10.6052/0459-1879-18-285
    [7]Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254
    [8]Lu Zeqi, Chen Liqun. SOME RECENT PROGRESSES IN NONLINEAR PASSIVE ISOLATIONS OF VIBRATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564. DOI: 10.6052/0459-1879-17-064
    [9]Gao Xue, Chen Qian, Liu Xianbin. NONLINEAR DYNAMICS DESIGN FOR PIECEWISE SMOOTH VIBRATION ISOLATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200. DOI: 10.6052/0459-1879-15-099
    [10]Dynamic properties of a class of vibration with isolator with solid-and-liquid mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 253-258. DOI: 10.6052/0459-1879-2009-2-2008-059
  • Cited by

    Periodical cited type(15)

    1. 谭鑫. 带局域共振单元液固混合介质隔振器的动力学特性研究. 振动与冲击. 2024(03): 189-193+200 .
    2. 吕小红,周文君,程百信. 含惯容器仿生隔振系统的特性分析. 兰州交通大学学报. 2024(06): 54-63+96 .
    3. 赵立财. 考虑剪切变形时波形钢腹板参数对连续刚构桥成桥线型的影响. 空间结构. 2024(04): 69-74 .
    4. 阮子悦,邢海军,卢学礼. 分段阻尼隔振系统的动力学特性分析. 动力学与控制学报. 2023(05): 44-52 .
    5. 王兰,邢海军,吕书锋. 移动凸轮变阻尼隔振装置动态性能研究. 振动与冲击. 2023(19): 110-116+171 .
    6. 周春燕,赵彪. 基于准零刚度隔振器的自适应模糊控制. 动力学与控制学报. 2023(09): 74-82 .
    7. 李翊歆,唐介,刘冀钊,姜博龙,李映辉. 一种基于电磁—空气弹簧的非线性隔振器理论与实验研究. 动力学与控制学报. 2023(11): 27-34 .
    8. 袁屹杰,纪明,张卫国,伊兴国,王毅,施道云. 菱形HSLDS隔振器负刚度机构质量及摩擦力影响分析. 应用光学. 2021(02): 207-214 .
    9. 利云云,周徐斌,陈卫东,刘兴天. 一类双层高静低动刚度隔振系统动力学特性和应用局限性研究. 振动工程学报. 2021(02): 364-371 .
    10. 隋鹏,申永军,杨绍普. 一种含惯容和接地刚度的动力吸振器参数优化. 力学学报. 2021(05): 1412-1422 . 本站查看
    11. 董杰,王雨田,胡晶,孙保安,汪卫华,白海洋. 非晶合金剪切带动力学行为研究. 力学学报. 2020(02): 379-391 . 本站查看
    12. 占旺龙,李卫,黄平. 基于Iwan模型的接合面切向响应建模. 力学学报. 2020(02): 462-471 . 本站查看
    13. 朴敏楠,王颖,周亚靖,孙明玮,张新华,陈增强. 自抗扰控制框架下的摩擦力振动分析. 力学学报. 2020(05): 1485-1497 . 本站查看
    14. 张婉洁,牛江川,申永军,杨绍普,王丽. 一类阻尼控制半主动隔振系统的解析研究. 力学学报. 2020(06): 1743-1754 . 本站查看
    15. 陈秋兴,何祖杨,张振林,庄瑞翰,徐虎. 基于人体重心偏移的振动发电系统研究. 广州航海学院学报. 2019(03): 54-57 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1846) PDF downloads (422) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return