EI、Scopus 收录
中文核心期刊
Zhang Junhui, Cui Yangyang, Tong An. STRUCTURAL DYNAMIC AND STABILITY ANALYSIS OF A STRIPPED SOLAR SAIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 237-244. doi: 10.6052/0459-1879-18-275
Citation: Zhang Junhui, Cui Yangyang, Tong An. STRUCTURAL DYNAMIC AND STABILITY ANALYSIS OF A STRIPPED SOLAR SAIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 237-244. doi: 10.6052/0459-1879-18-275

STRUCTURAL DYNAMIC AND STABILITY ANALYSIS OF A STRIPPED SOLAR SAIL

doi: 10.6052/0459-1879-18-275
  • Publish Date: 2019-01-18
  • Propelled by solar pressure, solar sail is thought as the most promising interstellar exploration technology. Two kinds of solar sail architecture have been proposed: boom-supporting solar sails and rotating solar sails, among them, stripped solar sail whose membrane is divided into separate narrow membrane strips is the ideal architecture for boom-supporting solar sails. How to precisely calculate structural dynamic characteristics of a stripped sails is worth studying. In this paper, the dynamic characteristics and stability of a stripped solar sail is studied. The whole solar sail structure is regarded as an assembly consisting of several sequentially connected boom-strip components, and one boom-strip component includes four boom segments and four membrane strips. In the stripped solar sail, the booms are under multiple-step axial loads and their vibrations are coupled with the vibrations of stripped membranes. Considering the coupling effects between booms and membrane strips, a closed form vibration model of the stripped solar sail is established by the distributed transfer function method. Based on this model, vibration characteristics and buckling loads of the stripped solar sail can be determined accurately and efficiently. Numerical results indicate that stripped solar sail architecture benefits to enhancing structural stiffness and stability, the more membrane strips will provide the higher stiffness and buckling loads, increasing membrane pre-stress will decrease base frequency of the stripped solar sail and worsen the structural stability, free vibration frequencies and buckling loads will increase with stiffness of the supporting booms. This presented analytical method is more efficiency and accurate than the numerical methods, which provides an efficient analysis tool for structure design and attitude control of stripped solar sails.

     

  • loading
  • [1] 胡海岩. 太阳帆航天器的关键技术. 深空探测学报, 2016, 3(4): 334-344
    [1] (Hu Haiyan.Key technologies of solar sail spacecraft. Journal of Deep Space Exploration, 2016, 3(4): 334-344 (in Chinese))
    [2] Tsuda Y, Mori O, Funase, R, et al.Achievement of IKAROS-Japanese deep space solar sail demonstration mission. Acta Astronautica, 2013, 82(2): 183-188
    [3] Johnson L, Whorton M, Heaton A.NanoSail-D: A solar sail demonstration mission. Acta Astronautica, 2011, 68(5-6): 571-575
    [4] Greschik G, Mikulas MM.Design study of a square solar sail architecture. Journal of Spacecraft and Rockets, 2002, 39(5): 653-661
    [5] Fernandez JM, Lappas VJ, Daton-Lovett AJ. The completely stripped solar sail concept. 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference, Honolulu, 2012-04-23-26. Reston: American Institute of Aeronautics and Astronautics, AIAA 2012-1745, 2012
    [6] 宋斌, 颜根廷, 张化岚等. 太阳帆航天器系统初步设想// 中国宇航学会深空探测技术专业委员会第八届学术年会论文集, 上海: CDSET, 2011: 51-58
    [6] (Song Bin, Yan Genting, Zhang Hualan, et al.Preliminary plan of a solar sail. Shanghai: CDSET, 2011: 51-58 (in Chinese))
    [7] 刘宇飞, 荣思远, 沈凡等. 太阳帆探测器构型选择研究// 中国宇航学会深空探测技术专业委员会第十届学术年会论文集, 北京: CDSET, 2013: 51-58
    [7] (Liu Yufei, Rong Siyuan, Shen Fan, et al.Study of a solar sail architecture. Beijing: CDSET, 2013: 51-58 (in Chinese))
    [8] 龚胜平, 李俊峰, 高云峰等. 太阳帆日心悬浮轨道附近的相对运动. 力学学报, 2007, 39(4): 522-527
    [8] (Gong Shengping, Li Junfeng, Gao Yunfeng, et al.Relative motion around displaced solar orbit. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 522-527 (in Chinese))
    [9] 李俊峰, 宝音贺西. 深空探测中的动力学与控制. 力学与实践, 2007, 29(4): 1-8
    [9] (Li Junfeng, Baoyin Hexi.Dynamics and control in deep space exploration. Mechanics in Engineering, 2007, 29(4): 1-8 (in Chinese))
    [10] 李俊峰, 曾祥远. 不规则小行星引力场内的飞行动力学. 力学进展, 2017, 47: 429-451
    [10] (Li Junfeng, Zeng Xiangyuan.Flight dynamics in the gravitational fields of irregular asteroids. Advances in Mechanics, 2017, 47: 429-451 (in Chinese))
    [11] 袁国强, 李颖晖. 二维稳定流形的自适应推进算法. 力学学报, 2018, 50(2): 405-414
    [11] (Yuan Guoqiang, Li Yinghui.Adaptive front advancing algorithm for computing two-dimensional stable manifolds. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 405-414 (in Chinese))
    [12] 钱霙婧, 翟冠峤, 张伟. 基于多项式约束的三角平动点平面周期轨道设计方法. 力学学报, 2017, 49(1): 154-164
    [12] (Qian Yingjing, Zhai Guanqiao, Zhang Wei.Planar periodic orbit construction around the triangular libration points based on polynomial constraints. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 154-164 (in Chinese))
    [13] 尹婷婷, 邓子辰, 胡伟鹏等. 空间刚性杆-弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018, 50(1): 87-98
    [13] (Yin Tingting, Deng Zichen, Hu Weipeng, et al.Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 87-98 (in Chinese))
    [14] 崔乃刚, 刘家夫, 荣思远. 柔性太阳帆航天器动力学建模与姿态控制. 哈尔滨工业大学学报, 2011, 43(7): 1-5
    [14] (Cui Naigang, Liu Jiafu, Rong Siyuan.Study on dynamics modeling and attitude control of flexible solar sail spacecraft. Journal of Harbin Institute of Technology, 2004, 36(2): 247-253 (in Chinese))
    [15] 张震亚, 韩艳铧, 贾杰. 带移动滑块的太阳帆航天器动力学建模与姿态控. 航天控制, 2014, 32(5): 29-35
    [15] (Zhang Zhenya, Han Yanhua, Jia Jie.Dynamics modeling and attitude control of moving-mass based Solar sail spacecraft. Aerospace Control, 2014, 32(5): 29-35 (in Chinese))
    [16] 张瑾, 王天舒, 翟坤. 柔性太阳帆航天器大角度机动控制研究. 工程力学, 2014, 31(11): 225-236
    [16] (Zhang Jin, Wang Tianshu, Zhai Kun.Research on the large-angle maneuver of the flexible solar sail spacecraft. Engineering Mechanics, 2014, 31(11): 225-236 (in Chinese))
    [17] 刘金刚, 倪洪江, 高鸿等. 超薄聚酰亚胺薄膜研究与应用进展. 航天器环境工程, 2014, 31(5): 470-475
    [17] (Liu Jingang, Ni Hongjiang, Gao Hong, et al.Research and application of ultrathin polyimide films. Spacecraft Environment Engineering, 2014, 31(5): 470-475 (in Chinese))
    [18] 沈自才, 高鸿, 牟永强等. 空间近紫外辐照聚酰亚胺薄膜力学性能演化机理. 真空科学与技术学报, 2016, 36(4): 482-487
    [18] (Shen Zicai, Gao Hong, Mo Yongqiang, et al.Mechanism for changes in mechanical properties of polyimide membrane irradiated by near ultraviolet light. Chinese Journal of Vacuum Science and Technology, 2016, 36(4): 482-487 (in Chinese))
    [19] 赵将, 刘铖, 田强等. 黏弹性薄膜太阳帆自旋展开动力学分析. 力学学报, 2013, 45(5): 746-754
    [19] (Zhao Jiang, Liu Cheng, Tian Qiang, et al.Dynamic analysis of spinning deployment of a solar sail composed of viscoelastic membranes. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 746-754 (in Chinese))
    [20] 霍倩, 饶哲, 周春燕. 太阳帆航天器展开结构技术综述. 航天控制, 2013, 31(2): 94-99
    [20] (Huo Qian, Rao Zhe, Zhou Chunyan.A review of solar sail spacecraft deployment technology. Aerospace Control, 2013, 31(2): 94-99 (in Chinese))
    [21] Zhao J, Tian Q, Hu HY.Deployment Dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mechanica Sinica, 2013, 29(1): 132-142
    [22] 郭红军, 郑津津, 沈连婠. 新型太阳帆结构模态分析. 机械与电子, 2013, 6: 3-11
    [22] (Guo Hongjun, Zheng Jinjin, Shen Lianguan.Modal analysis of a new solar sail. Machinery & Electronics, 2013, 6: 3-11 (in Chinese))
    [23] 马鑫, 杨萱, 郑建华等. 太阳帆柔性结构动力学仿真分析. 空间控制技术与应用, 2014, 40(3): 36-46
    [23] (Ma Xin, Yang Xuan, Zheng Jianhua, et al.Simulation and analysis for the flexible structure of solar sail spacecraft. Aerospace Control and Application, 2014, 40(3): 36-46 (in Chinese))
    [24] 李纯, 陈务军, 蔡祈耀等. 对角伸展太阳帆结构及膜面应力导入分析. 哈尔滨工业大学学报, 2017, 49(4): 28-34
    [24] (Li Chun, Chen Wujun, Cai Qiyao, et al.Structural analysis and import of membrane stress for diagonal extendable solar sail craft. Journal of Harbin Institute of Technology, 2017, 49(4): 28-34 (in Chinese))
    [25] 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解. 航空学报, 2010, 31(8): 1565-1571
    [25] (Cui Naigang, Liu Jiafu, Rong Siyuan.Solar sail spacecraft dynamic modeling and solving. Acta Aeronautica ET Astronautica Sinica, 2010, 31(8): 1565-1571 (in Chinese))
    [26] 张瑾, 翟坤, 王天舒. 柔性太阳帆轨道–姿态–弹性振动耦合效应研究. 上海航天, 2015, 32(2): 1-7
    [26] (Zhang Jin, Zhai Kun, Wang Tianshu.Coupling effect of orbit, attitude and elastic vibration for flexible solar sail. Aerospace Shanghai, 2015, 32(2): 1-7 (in Chinese))
    [27] Holland DB, Virgin LN, Belvin WK. Investigation of structural dynamics in a 2-meter square solar sail model including axial load effects// 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics,Materials Conference, Norfolk, 2003-4-7-10. Reston: American Institute of Aeronautics and Astronautics, AIAA 2003-1746, 2003
    [28] Sleight DW, Muheim DM. Parametric studies of square solar sails using finite element analysis 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference, Palm Springs, 2004-4-19-22. Reston: American Institute of Aeronautics and Astronautics, AIAA 2004-1509, 2004
    [29] Sleight DW, Mann TO, Slade KN, et al. Finite element analysis and test correlation of a 10-meter inflation-deployed solar sail// 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, 2005-4-18-21. Reston: American Institute of Aeronautics and Astronautics, AIAA 2005-2121, 2005
    [30] Sakamoto H, Miyazaki Y, Park KC.Finite element modeling of sail deformation under solar radiation pressure. Journal of Spacecraft and Rockets, 2007, 44(3): 514-521
    [31] Stanciulescu I, Virgin LN, Laursen TA.Slender solar sail booms: finite element analysis. Journal of Spacecraft and Rockets, 2007, 44(3): 528-537
    [32] Gaspar JL, Jones TW, Murphy DM.Solar sail structural characterization test program. Journal of Spacecraft and Rockets, 2007, 44(4): 765-783
    [33] Yang B, Tan CA.Transfer functions of one-dimensional distributed parameter systems. Journal of Applied Mechnics, 1992, 59: 1009-1014
    [34] Tan CA, Chung CH.Transfer function formulation of constrained distributed parameter systems, part I: Theory. Journal of Applied Mechnics, 1993, 60: 1004-1011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1883) PDF downloads(277) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return