EI、Scopus 收录
中文核心期刊
Fengxian Fan, Zhiqiang Wang, Ju Liu, Huateng Zhang. DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424. DOI: 10.6052/0459-1879-18-262
Citation: Fengxian Fan, Zhiqiang Wang, Ju Liu, Huateng Zhang. DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424. DOI: 10.6052/0459-1879-18-262

DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE

  • When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube and finally stabilize at a certain height. As this phenomenon much resembles the capillary effect of liquid, it is termed as granular capillarity. To explore the particle-scale dynamical behaviors and their mechanisms associated with the process of granular capillarity, the motion of particles was modeled based on the discrete element method (DEM). Using this model, the dynamical processes and behaviors of particles in the granular capillarity were numerically investigated. The entire process of the granular capillarity obtained by experiments in literature was numerically reproduced and the evolution of the height of the granular column in the tube with time was shown. The results show that depending on the parameters of the granular system, the granular capillarity process under the simulation condition exhibits three phases characterized as periodic rising, period-doubling rising, and period-doubling steady-state in turn. During the period-doubling rising phase the velocity of capillary rise decreases gradually and a smooth transition to period-doubling steady-state phase is observed. On this basis, the evolutions of particle velocity filed as well as the particle packing fraction in the tube were analyzed. Furthermore, the distributions of the percentage of particles transported from the container into the tube in the granular capillarity process were revealed. It is found that the particle velocities at different heights are unsynchronized, as a result, velocity wave appears in the tube with the vibrational motion of the tube. The propagation of the velocity wave causes alternative expansion and compression of particles in the tube, giving rise to the periodical change of particle packing density. Moreover, higher percentage of particles transported from the container into the tube is observed in the region closer to the tube wall in the rising phase, while granular convection that occurs in the upper layers of the granular column leads to a reversing distribution of percentage of particles transported from the container into the tube in the steady-state phase.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return