EI、Scopus 收录
中文核心期刊
Gao Ti, a, Sun Jiao, Fan Ying, Chen Wenyi. PIV EXPERIMENTAL INVESTIGATION ON THE BEHAVIOR OF PARTICLES IN THE TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 103-110. doi: 10.6052/0459-1879-18-211
Citation: Gao Ti, a, Sun Jiao, Fan Ying, Chen Wenyi. PIV EXPERIMENTAL INVESTIGATION ON THE BEHAVIOR OF PARTICLES IN THE TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 103-110. doi: 10.6052/0459-1879-18-211

PIV EXPERIMENTAL INVESTIGATION ON THE BEHAVIOR OF PARTICLES IN THE TURBULENT BOUNDARY LAYER

doi: 10.6052/0459-1879-18-211
  • Publish Date: 2019-01-18
  • The particle image velocimetry (PIV) is used to conduct experimental research in the solid-liquid two-phase plane turbulent boundary layer. The turbulence statistics such as the average velocity profile, turbulence intensity and Reynolds stress of the particle phase and single-phase clean water are compared to analyze the behavior of the particles in the turbulent boundary layer. The concept of multi-scale spatial locally-averaged vortices is utilized to extract the spatial topologies of the spanwise vortex head and the statistic of the prograde vortex is acquired. From that, the spatial topologies of the fluctuating velocity and streamlines around the prograde vortex at different normal positions can be obtained. The degree of development of the prograde vortex and the surrounding turbulence coherence structure can be compared and analyzed. The results show that compared with the clean water conditions, the buffer layer of the turbulent boundary layer of the particle phase becomes thinner, the logarithmic region moves downward, the turbulence intensity is enhanced, and the Reynolds stress in the logarithmic law region is increased. The fluctuating velocity of the particle phase is different from the clear water condition around the vortex, and the particles can be effectively transferred by the burst process around the spanwise vortex. The particle-laden flow has a large prograde vortex core and develops as the normal position rises. The vortex and the band stretch longer in the flow direction. At the same time, it is found that there is always a retrograde vortex in the lower left of the prograde vortex under both conditions, and the formation of retrograde vortex in the particle-laden flow is weaker than that of single-phase fluids. The number of prograde vortices in both conditions decreases with the increase of the normal position, and finally gradually stabilizes.

     

  • loading
  • [1] 岳湘安. 液-固两相流基础. 北京: 石油工业出版社, 1996
    [1] (Yue Xian'an, Foundation of Liquid-solid Two-phase Flow. Beijing: Petroleum Industry Press, 1996(in Chinese))
    [2] 白静, 方红卫, 何国建等. 细颗粒泥沙净冲刷和输移的大涡模拟研究.力学学报, 2017, 49(1): 65-74
    [2] (Bai Jing, Fang Hongwei, He Guojian, et al.Numerical simulation of erosion and transport of fine sediments by large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 65-74(in Chinese))
    [3] Gore RA, Crowe CT.Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 1989, 15(2): 279-285
    [4] 张培杰,林建忠.非牛顿流体固粒悬浮流的若干问题. 力学学报, 2017, 49(3): 543-549
    [4] (Zhang Peijie, Lin Jianzhong.Review of some researches on suspension of solid particle in non-Newtonian fluid. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 543-549(in Chinese))
    [5] 王殿常, 禹明忠, 王兴奎. 明槽水流中颗粒运动特性的试验研究. 应用基础与工程科学学报, 2000, 8(3): 301-309
    [5] (Wang Dianchang, Yu Mingzhong, Wang Xingkiu.Experimental study on particle movement characteristics in water flow in open channel. Journal of Applied Basic and Engineering Sciences, 2000, 8(3): 301-309(in Chinese))
    [6] 陈荣前, 聂德明. 椭圆颗粒在剪切流中旋转特性的数值研究. 力学学报, 2017, 49(2): 257-267
    [6] (Chen Rongqian, Nie Deming.Numerical study on the rotation of an elliptical particle in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 257-267(in Chinese))
    [7] 刘青泉. 水-沙两相流的激光多普勒分相测量和试验研究. 泥沙研究, 1998(2): 72-80
    [7] (Liu Qingquan.LDV measurments and experimental study of water and sediment two-phase flow. Sediment Research, 1998(2): 72-80(in Chinese))
    [8] 禹明忠. PTV技术和颗粒三维运动规律的研究. [博士论文]. 北京: 清华大学, 2002
    [8] (Yu Mingzhong.Study on PTV technique and 3-D movement of particles. [PhD Thesis]. Beijing: Tsinghua University, 2002(in Chinese))
    [9] 宋晓阳, 及春宁, 许栋. 明渠湍流边界层中颗粒的运动与分布. 力学学报, 2015, 47(2): 231-241
    [9] (Song Xiaoyang, Ji Chunning, Xu Dong.Distribution and motion of particles in the turbulent boundary layer of channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 231-241(in Chinese))
    [10] 林建忠, 王灿星. 研究两相流中固粒对流体湍动特性影响的新方法. 工程热物理学报, 1997(4): 497-501
    [10] (Lin Jianzhong, Wang Canxing.A new method of studying the effect of particles on the turbulent properties. Journal of Engineering Thermophysics, 1997(4): 497-501(in Chinese))
    [11] Deshmukh A, Vasava V, Patankar A, et al.Particle velocity distribution in a flow of gas-solid mixture through a horizontal channel. Powder Technology, 2016, 298: 119-129
    [12] Muste M, Patel VC.Velocity profiles for particles and liquid in open-channel flow with suspended sediment. Journal of Hydraulic Engineering, 1997, 123(9): 742-751
    [13] Righetti M, Romano GP.Particle-fluid interactions in a plane near-wall turbulent flow. Journal of Fluid Mechanics, 2004, 505(505): 93-121
    [14] Wang J, Levy EK.Particle motions and distributions in turbulent boundary layer of air-particle flow past a vertical flat plate. Experimental Thermal & Fluid Science, 2003, 27(8):845-853
    [15] Wang J, Levy EK.Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate. Experimental Thermal & Fluid Science, 2006, 30(5): 473-483
    [16] 王汉封, 栗晶, 柳朝晖等. 水平槽道内气固两相湍流中颗粒行为的PIV实验研究. 实验流体力学, 2012, 26(1): 38-44
    [16] (Wang Hanfeng, Li Jing, Liu ZH, et al. PIV experimental study of particle behavior in gas-solid two-phase turbulence in a horizontal channel. Experimental Fluid Mechanics, 2012, 26(3): 38-44(in Chinese))
    [17] Sumer BM, Deigaard R.Particle motions near the bottom in turbulent flow in an open channel. Part 2. Journal of Fluid Mechanics, 2006, 109(109): 311-337
    [18] Sumer BM, Oguz B.Particle motions near the bottom in turbulent flow in an open channel. Journal of Fluid Mechanics, 2006, 86(1): 109-127
    [19] Li D, Luo K, Fan J.Particle statistics in a two-way coupled turbulent boundary layer flow over a flat plate. Powder Technology, 2017, 305: 250-259
    [20] Vinkovic I, Doppler D, Lelouvetel J, et al. Direct numerical simulation of particle interaction with ejections in turbulent channel flows. International Journal of Multiphase Flow, 2011, 37(2): 187-197
    [21] Marchioli C, Soldati A.Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 2002, 468(468): 283-315
    [22] 吴文权, 黄远东. 液固两相流中流体旋涡对固体粒子运动影响的数值研究. 工程热物理学报, 1999, 20(3): 365-369
    [22] (Wu Wenquan, Huang Yuandong.A numerical study of the effect of fluid vortex on solid particle motion in liquid-solid two-phase flow. Journal of Engineering Thermophysics, 1999, 20(3): 365-369(in Chinese))
    [23] 黄远东, 吴文权. 非定常不稳定液固两相流动中旋涡对颗粒运动影响的数值研究. 水科学进展, 2002, 13(1): 1-8
    [23] (Huang Yuandong, Wu Wenquan.Numerical study of the effect of vortices on particle motion in unsteady and unstable liquid-solid two-phase flow. Advances in Water Science, 2002, 13(1): 1-8(in Chinese))
    [24] Dritselis CD, Vlachos NS.Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Physics of Fluids, 2008, 20(5): 69
    [25] Richter DH, Sullivan PP.Modification of near-wall coherent structures by inertial particles. Physics of Fluids, 2014, 26(10): 407-432
    [26] 陈启刚, 李丹勋, 钟强等. 基于模式匹配法的明渠紊流涡结构分析. 水科学进展, 2013, 24(1): 95-102
    [26] (Chen Qigang, Li Danxun, Zhong Qiang, et al. Analysis of turbulent eddy structure in open channel based on pattern matching method. Progress in Water Science, 2013, 24(1): 95-102(in Chinese))
    [27] Hambleton WT, Hutchins N, Marusic I.Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. Journal of Fluid Mechanics, 2006, 560(560): 53-64
    [28] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的TRPIV实验研究. 力学学报, 2016, 48(5): 1033-1039
    [28] (Su Jian, Tian Haiping, Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039(in Chinese))
    [29] Kaftori D, Hetsroni G, Banerjee S.Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Physics of Fluids, 1995, 7(5): 1095-1106
    [30] Kaftori D, Hetsroni G, Banerjee S.Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Physics of Fluids, 1995, 7(5): 1107-1121
    [31] Elghobashi S.On predicting particle-laden turbulent flows. Applied Scientific Research, 1994, 52(4): 309-329
    [32] 姜楠, 管新蕾, 于培宁. 雷诺应力各向异性涡黏模型的层析TRPIV测量. 力学学报, 2012, 44(2): 213-221
    [32] (Jiang Nan, Guan Xinlei, Yu Peining.Tomography TRPIV measurement of the anisotropic eddy viscosity model of Reynolds stress. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 213-221(in Chinese))
    [33] 姜楠, 于培宁, 管新蕾. 湍流边界层相干结构空间拓扑形态的层析TRPIV测量. 航空动力学报, 2012, 27(5): 1113-1121
    [33] (Jiang Nan, Yu Peining, Guan Xinlei.Tomographic TRPIV measurement of spatial topological morphology of coherent structures in turbulent boundary layer. Journal of Aeronautical Power, 2012, 27(5): 1113-1121(in Chinese))
    [34] Adrian RJ, Meinhart CD, Tomkins CD.Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000, 422(422): 1-54
    [35] ElsingA GE, Marusic I. Lifetimes of flow topology in a turbulent boundary layer. Physics of Fluids, 2010, 22(1): 457-82
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1180) PDF downloads(305) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return