EI、Scopus 收录
Zhu Zhenhua, Shao Baijun, Wang Jun, Shao Yu, Chen Jiankang, Zhang Minghua. EFFECT OF AGING ON STRUCTURE AND STRESS RELAXATION OF PP/SSFs COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080
Citation: Zhu Zhenhua, Shao Baijun, Wang Jun, Shao Yu, Chen Jiankang, Zhang Minghua. EFFECT OF AGING ON STRUCTURE AND STRESS RELAXATION OF PP/SSFs COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080


doi: 10.6052/0459-1879-18-080
  • Received Date: 2018-03-19
  • Publish Date: 2018-05-18
  • Conductive polymer composites, with good flexibility, adjustable conductivity, easy forming and low production cost, can be used as functional material in many fields for its antistatic properties, electromagnetic shielding/microwave absorbing properties, and pressure/temperature sensitivity. However, in the process of processing, storage and use, due to comprehensive influence of many factors, aging will inevitably occur which will lead to deterioration of the properties. In this paper, PP/SSFs (stainless steel fibers) conductive composites were prepared by melt-blending and injection molding. The specimens were subjected to accelerated hygrothermal aging and UV aging. Stress relaxation curves, resistivity and crystallinity were experimentally measured. Micromorphology and elemental distribution of specimens before and after aging have been observed and dectected by scanning electron microscope (SEM) and energy spectrometer (EDS). The results show that the stress relaxation curves display three-stages in characteristics. And the stress reduces after hygrothermal aging due to the breaking and cross-linking of molecular chain caused by aging. The initial resistivity of PP/SSFs composites decreases with the increase of filler content, while it will increased with aging time. Due to the piezoresistive effect of the conductive polymer, the resistivity of the specimens decreases significantly with the increase of initial load, and then it tends to a stable value and fluctuation in a smaller range. The results of SEM/EDS analysis show that with the increase of aging time, the oxygen content on the specimens surface increases, and it will decreases with distance (depth) to the surface of specimen. XRD results show that the crystallinity of composites decreased with the increase of SSFs content and aging time. The present research will provide an experimental basis for the study of aging properties of conductive polymer composites.


  • loading
  • [1] Wang S, Chung DDL.Negative piezoresistivity in continuous carbon fiber epoxy-matrix composite.Journal of Materials Science, 2007, 42(13): 4987-4995
    [2] Qu S, Wong SC.Piezoresistive behavior of polymer reinforced by expanded graphite. Composites Science & Technology, 2007, 67(2): 231-237
    [3] 周剑锋, 宋义虎, 郑强. 聚合物基导电复合材料的黏弹性电阻响应. 中国新技术新产品, 2015(21): 53-54
    [3] (Zhou Jianfeng, Song Yihu, Zheng Qiang.Viscoelastic resistance response of polymer based conductive composites. New Technology & New Products in China, 2015 (21): 53-54 (in Chinese))
    [4] 刘虎. 柔性热塑性聚氨酯导电纳米复合材料的应激响应及其机理研究. [博士论文]. 郑州: 郑州大学, 2017
    [4] (Liu Hu.Stress response and mechanism of flexible thermoplastic polyurethane conductive nanocomposites. [PhD Thesis]. Zhengzhou: Zhengzhou University, 2017(in Chinese))
    [5] 徐佩, 王小溪, 胡亚东等. 烯丙基离子液体修饰炭黑/硅橡胶复合材料的压阻特性. 高分子材料科学与工程, 2017, 33(6): 65-69
    [5] (Xu Pei, Wang Xiaoxi, Hu Yadong, et al.The piezoresistive properties of allyl ionic liquid modified carbon black / silicone rubber composites.Polymeric Materials Science and Engineering, 2017, 33(6): 65-69(in Chinese))
    [6] 索倩倩. 以聚丁烯为基体发泡材料的制备与性能研究. [硕士论文]. 北京化工大学, 2016
    [6] (Suo Qianqian.Preparation and properties of polybutene-based foamed material. [Master Thesis]. Beijing: Beijing University of Chemical Technology, 2016 (in Chinese))
    [7] 左哲伟, 夏志东, 聂京凯等. 碳纤维填充对导电硅橡胶压阻效应及电阻蠕变行为的影响. 材料导报, 2016, 30(s2): 440-443
    [7] (Zuo Zhewei, Xia Zhidong, Nie Jingkai, et al.Influence of carbon fiber filling on the piezoresistive effect and resistance creep behavior of conductive silicone rubber. Materials Review, 2016, 30(s2): 440-443 (in Chinese))
    [8] Wang P, Ding T.Conductivity and piezoresistivity of conductive carbon black filled polymer composite.Journal of Applied Polymer Science, 2010, 116(4): 2035-2039
    [9] 张智枢, 顾欣, 杨云云等. 聚乙烯管材专用料(PE-XRT70)应力松弛和蠕变行为. 四川大学学报(工程科学版), 2017, 49(2): 232-239
    [9] (Zhang Zhishu, Gu Xin, Yang Yunyun, et al.Stress relaxation and creep behavior of polyethylene pipe special material (PE-XRT70). Journal of Sichuan University ( Engineering Science), 2017, 49(2): 232-239 (in Chinese))
    [10] 张晓萌, 姚占勇, 张硕等. 应力松弛对PET/炭黑/碳纤维复合材料影响规律分析. 工程塑料应用, 2017, 45(4): 99-103
    [10] (Zhang Xiaomeng, Yao Zhanyong, Zhang Shuo, et al.Analysis of the influence of stress relaxation on PET/carbon black/carbon fiber composites.Engineering Plastics Application, 2017, 45(4): 99-103(in Chinese))
    [11] 蔡利海, 张诚, 郭宝华等. 尼龙1010应力松弛行为研究. 高分子学报, 2016(3): 382-390
    [11] (Cai Lihai, Zhang Cheng, Guo Baohua, et al.Study on stress relaxation behavior of nylon 1010. Acta Polymerica Sinica, 2016 (3): 382-390(in Chinese))
    [12] 许珊珊, 张营营, 张其林. PTFE膜材的应力松弛性能及预测模型分析. 应用数学和力学, 2016, 37(3): 266-276
    [12] (Xu Shanshan, Zhang Yingying, Zhang Qilin.PTFE membrane material analysis of stress relaxation properties and prediction model of.Applied Mathematics and Mechanics, 2016, 37(3): 266-276 (in Chinese))
    [13] Zheng Q, Zhou JF, Song YH.Time-dependent uniaxial piezoresistive behavior of high-density polyethylene/short carbon fiber conductive composites.Journal of Materials Research, 2004, 19(9): 2625-2634
    [14] Wang L, Ding T, Wang P.Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation.Composites Science & Technology, 2008, 68(15-16): 3448-3450
    [15] Wang L, Han Y.Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite.Composites Part Applied Science & Manufacturing, 2013, 47(1): 63-71
    [16] Zhai T, Li D, Fei G, et al.Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam.Composites Part Applied Science & Manufacturing, 2015, 72: 108-114
    [17] 陈明, 贾来兵, 尹协振. 描述鱼鳍材料松弛特性的分数Zener模型. 力学学报, 2011, 43(1): 217-220
    [17] (Chen Ming, Jia Laibing, Yin Xiezhen.Fractional Zener model describing the relaxation characteristics of fins. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 217-220 (in Chinese))
    [18] 彭凡, 顾勇军, 马庆镇. 热环境中黏弹性功能梯度材料及其结构的蠕变. 力学学报, 2012, 44(2): 308-316
    [18] (Peng Fan, Gu Yongjun, Ma Qingzhen.Creep of viscoelastic functionally graded material structure in thermal environment. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 308-316 (in Chinese))
    [19] 杜伯学, 侯兆豪, 徐航等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展. 高电压技术, 2017 (9): 2769-2780
    [19] (Du Boxue, Hou Zhaoxu, Xu Hang, et al.Research progress on polypropylene for high voltage DC cable insulation and its nanocomposites.High Voltage Engineering, 2017 (9): 2769-2780(in Chinese))
    [20] 倪玲贵, 买买提江·依米提, 热依扎·别坎, 等. 不同老化方法对聚丙烯老化程度的影响. 塑料工业, 2017, 45(1): 93-96
    [20] (Ni Linggui, Maomatijiang Yimiti, Reizha Beikan, et al.Effect of different aging methods on polypropylene aging.China Plastics Industry, 2017, 45(1): 93-96(in Chinese))
    [21] 李洋, 李培耀, 郭兵等. 聚丙烯热氧加速老化评估和使用寿命的研究. 塑料工业, 2015, 43(11): 93-96
    [21] (Li Yang, Li Peiyao, Guo Bing, et al.Study on accelerated aging evaluation and service life of polypropylene thermal oxidation.China Plastics Industry, 2015, 43(11): 93-96 (in Chinese))
    [22] 田瑶君, 秦军, 陆之洋等. 聚丙烯户外自然光老化失效分析. 塑料, 2016(3): 97-99
    [22] (Tian Yaojun, Qin Jun, Lu Zhiyang, et al.Failure analysis of outdoor natural light aging of polypropylene.Plastic, 2016 (3): 97-99(in Chinese))
    [23] Grabmayer K, Beißmann S, Wallner GM, et al.Characterization of the influence of specimen thickness on the aging behavior of a polypropylene based model compound.Polymer Degradation & Stability, 2014, 111: 185-193
    [24] Wanasekara N, Chalivendra V, Calvert P, et al.Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation.Polymer Degradation & Stability, 2011, 96(4): 432-437
    [25] Yano A, Akai N, Ishii H, et al.Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy.Polymer Degradation & Stability, 2013, 98(12): 2679-2686
    [26] Lv Y, Huang Y, Yang J, et al.Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study.Polymer Degradation & Stability, 2015, 112: 145-159
    [27] 付云伟, 张龙, 倪新华等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析. 力学学报, 2016, 48(1): 154-162
    [27] (Fu Yunwei, Zhang Long, Ni Xinhua, et al.Interface cracking analysis with inclusions interaction in composite ceramic.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162 (in Chinese))
    [28] 徐业守, 徐赵东, 葛腾等. 黏弹性材料等效分数阶微观结构标准线性固体模型. 力学学报, 2017, 49(5): 1059-1069
    [28] (Xu Yeshou, Xu Zhaodong, Ge Teng, et al.Equivalent fractional order micro-structure standard linear solid model for viscoelastic materials.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1059-1069 (in Chinese))
    [29] 张作启, 刘彬. 任意加载模式下含裂纹超弹性体的能量释放率. 力学学报, 2013, 45(1): 129-133
    [29] (Zhang Zuoqi, Liu Bin.Energy release rate of cracked superelastic body under arbitrary loading mode.Journal of Mechanics, 2013, 45(1): 129-133 (in Chinese))
    [30] 唐景, 彭丽霞, 张增明等. 不同老化模式对光伏背板中PET结晶度的影响. 合成材料老化与应用, 2011, 40(2): 40-46
    [30] (Tang Jing, Peng Lixia, Zhang Zengming, et al.Crystallinity of PET in photovoltaioc backsheet under different ageing pattern.Synthetic Materials Aging and Application, 2011, 40(2): 40-46(in Chinese))
    [31] 周韫捷, 李红雷, 王琦梦等. 加速热老化对XLPE电缆绝缘力学性能和介电性能的影响研究. 华东电力, 2014, 42(8): 1606-1610
    [31] (Zhou Yunjie, Li Honglei, Wang Qimeng, et al.Effect of accelerated thermal aging on mechanical and dielectric properties of XLPE cable insulation.East China Electric Power, 2014, 42(8): 1606-1610 (in Chinese))
    [32] 徐俊, 王晓东, 欧阳本红, 等. 热老化对交联聚乙烯电缆绝缘理化结构的影响. 绝缘材料, 2013(2): 33-37
    [32] (Xu Jun, Wang Xiaodong, Ouyang Benhong, et al.Effect of thermal aging on the physicochemical structure of XLPE cable insulation. Insulating Materials, 2013(2): 33-37 (in Chinese))
    [33] 姚培培, 李琛, 肖生苓. 紫外老化对聚苯乙烯泡沫性能的影响. 化工学报, 2014, 65(11): 4620-4626
    [33] (Yao Peipei, Li Chen, Xiao Shengling.Effect of ultraviolet aging on properties and structure of polystyrene.Journal of Chemical Industry and Engineering(China), 2014, 65(11): 4620-4626 (in Chinese))
    [34] 代军, 晏华, 郭骏骏等. 结晶度对高密度聚乙烯热氧老化特性的影响. 高分子材料科学与工程, 2016, 32(9): 65-71
    [34] (Dai Jun, Yan Hua, Guo Junjun, et al.Effect of crystallinity on thermal aging properties of high density Polyethylene.Polymeric Materials Science and Engineering, 2016, 32(9): 65-71 (in Chinese))
    [35] 刘一鸣, 胡贵, 吴智华. 抗氧剂对无规共聚聚丙烯抗紫外光老化性能的影响. 塑料科技, 2012, 40(12): 84-88
    [35] (Liu Yiming, Hu Gui, Wu Zhihua.Effect of antioxidants on the anti-ultraviolet aging behavior of polypropylene random copolymer.Plastics Science and Technology, 2012, 40(12): 84-88 (in Chinese))
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (963) PDF downloads(454) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint