EI、Scopus 收录
中文核心期刊
Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410
Citation: Xiong Xun, Li Tianmi, Ma Qiqi, Fang Jisong, Zheng Yuxuan, Zhou Fenghua. DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632. DOI: 10.6052/0459-1879-17-410

DISCRETE ELEMENT SIMULATIONS OF THE HIGH VELOCITY EXPANSION AND FRAGMENTATION OF QUARTZ GLASS RINGS

  • Received Date: December 07, 2017
  • The mechanical behavior of quartz glass rings under internal velocity impact is simulated by using discrete element method (DEM) based on the flat-jointed bond model. The microscopic mechanical parameters of the quartz glass ring were determined by comparing the standard uniaxial compressive/tensile and three-point bending numerical test results with the experimental results. Using these material parameters, the fragmentation processes of quartz glass rings under different impact velocities were numerically simulated. The numerical results showed that: the failure time of the quartz glass ring corresponded to a rebounding of the radial velocity, macroscopically this timing is coincident with the rapid drop of average stress. This radial velocity rebounding is attributed to the unloading waves incited from the brittle cracking of the tensile specimen, and can be used in the numerical analysis as the failure point. Detailed numerical tests and analysis showed that: (1) The fracture strain of quartz glass ring increases with the increase of strain rate, a phenomenon consistent with experimental observations for ductile materials; (2) The average mass of the quartz glass ring decreases with the increasing strain rate; (3) The average fragment size in the simulation was consistent with the theoretical and experimental data in other papers. An experiment device of liquid-driven expanding ring was used to conduct preliminary tests. The morphology and the number of fragments recovered from real tests are consistent with the numerical simulations.
  • [1] Grady DE, Kipp ME. Continuum modelling of explosive fracture in oil shale.International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147-157
    [2] Zhou F, Molinari JF. Stochastic fracture of ceramics under dynamic tensile loading.International Journal of Solids & Structures, 2004, 41(22-23): 6573-6596
    [3] Hild F, Denoual C, Forquin P, et al. On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials. Computers & Structures, 2003, 81(12): 1241-1253
    [4] Grady DE. Local inertial effects in dynamic fragmentation.Journal of Applied Physics, 1982, 53(1): 322-325
    [5] Glenn LA, Chudnovsky A. Strain-energy effects on dynamic fragmentation.Journal of Applied Physics, 1986, 59(4): 1379-1380
    [6] Gilvarry JJ, Bergstrom BH. Fracture of brittle solids. II. Distribution function for fragment size in single fracture (experimental).Journal of Applied Physics, 1961, 32: 400-410
    [7] Gilvarry JJ, Bergstrom BH. Fracture of brittle solids. III. Experimental results on the distribution of fragment size in single fracture.Journal of Applied Physics, 1962, 33: 3211-3213
    [8] Sarva S, Nemat-Nasser S. Dynamic compressive strength of silicon carbide under uniaxial compression.Materials Science and Engineering, 2001, A317: 140-144
    [9] Wang H, Ramesh KT. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression.Acta Materialia, 2004, 52: 355-367
    [10] Rasorenov SV, Kanel GI, Fortov VE, et al. The fracture of glass under high-pressure impulsive loading.High Pressure Research, 1991, 6(4): 225-232
    [11] Johnson PC, Stein BA, Davis KS. Measurement of plastic flow properties under uniform stress. 1963
    [12] Niordson FI. A unit for testing materials at high strain rates.Experimental Mechanics, 1965, 5(1): 29-32
    [13] 汤铁钢, 刘仓理. 一种新型爆炸膨胀环实验装置. 实验力学, 2013, 28(2): 247-254
    [13] (Tang Tiegang, Liu Cangli. A novel experimental setup for explosively loaded expanding ring test.Journal of Experimental Mechanics, 2013, 28(2): 247-254 (in Chinese))
    [14] Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation - I. Real-time and post-mortem observations in Al 6061-O.International Journal of Fracture, 2007, 142(3): 183-217
    [15] 桂毓林, 孙承纬, 李强等. 实现金属环动态拉伸的电磁加载技术研究. 爆炸与冲击, 2006, 26(6): 28-28
    [15] (Gui Yulin, Sun Chengwei, Li Qiang, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading.Explosion & Shock Waves, 2006, 26(6): 28-28 (in Chinese))
    [16] 王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究. 固体力学学报, 2008, 29(3): 245-249
    [16] (Wang Yonggang, Zhou Fenghua. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion.Chinese Journal of Solid Mechanics, 2008, 29(3): 245-249 (in Chinese))
    [17] 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术. 爆炸与冲击, 2014, 34(4): 483-488
    [17] (Zheng Yuxuan, Zhou Fenghua, Hu Shisheng. An SHPB-based experimental technique for dynamic fragmentations of expanding rings.Explosion and Shock Waves, 2014, 34(4): 483-488 (in Chinese))
    [18] 张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究. 宁波大学学报(理工版), 2017, 30(2): 35-38
    [18] (Zhang Jia, Zheng Yuxuan, Zhou Fenghua. Experimental technique for fragmentation of liquid-driven expanding ring. Journal of Ningbo University ( Natural Science and Engineering Edition), 2017, 30(2): 35-38 (in Chinese))
    [19] 李天密,张佳,方继松等. PMMA膨胀环动态拉伸碎裂实验研究. 力学学报, 2018, 50(4): doi:10.6052/0459-1879-18-016
    [19] (Li Tianmi, Zhang Jia, Fang Jisong, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): doi:10.6052/0459-1879-18-016 (in Chinese))
    [20] Potyondy DO, Cundall PA. A bonded-particle model for rock.International Journal of Rock Mechanics & Mining Sciences, 2004, 41: 1329-1364
    [21] 冯春, 李世海, 刘晓宇. 基于颗粒离散元法的连接键应变软化模型及其应用. 力学学报, 2016, 48(1): 76-85
    [21] (Feng Chun, Li Shihai, Liu Xiaoyu. Particle-DEM based linked bar strain softening model and its application.Chinese Journal of Theoretical & Applied Mechanics, 2016, 48(1): 76-85 (in Chinese))
    [22] Xia M,Zhao C. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models.Journal of Central South University, 2014, 21(7): 2885-2893
    [23] Cho N, Martin CD, Sego DC. A clumped particle model for rock.International Journal of Rock Mechanics & Mining Sciences, 2007, 44(7): 997-1010
    [24] 周喻, Misra A, 吴顺川等. 岩石节理直剪试验颗粒流宏细观分析. 岩石力学与工程学报, 2012, 31(6): 1245-1256
    [24] (Zhou Yu, Misra A, Wu Shunchuan, et al. Macro- and meso-analyses of rock joint direct shear test using particle flow theory.Chinese Journal of Rock Mechanics & Engineering, 2012, 31(6): 1245-1256 (in Chinese))
    [25] Park JW, Song JJ. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model.International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1315-1328
    [26] Potyondy DO. A flat-jointed bonded-particle material for hard rock// 46 textsuperscriptth U.S. Rock Mechanics/Geomechanics Symposium. 2012
    [27] Yang B, Jiao Y, Lei S. A study on the effects of micro parameters on macro properties for specimens created by bonded particles.Engineering Computations, 2006, 23(6): 607-631
    [28] 王玉芬, 刘连城. 石英玻璃. 北京: 化学工业出版社, 2007
    [28] (Wang Yufen, Liu Liancheng. Quartz Glass.Beijing: Chemical Industry Press, 2007 (in Chinese))
    [29] 王承遇, 卢琪, 陶瑛. 玻璃的脆性(一). 玻璃与搪瓷, 2011, 39(6): 37-43
    [29] (Wang Chengyu, Lu Qi, Tao Ying. Brittleness of glass. Glass & Enamel, 2011, 39(6): 37-43 (in Chinese))
    [30] Zhou F, Molinari JF, Ramesh KT. Effects of material properties on the fragmentation of brittle materials. International Journal of Fracture, 2006, 139(2): 169-196
    [31] 郑宇轩, 周风华, 胡时胜等. 固体的冲击拉伸碎裂. 力学进展, 2016, 46: 201612
    [31] (Zheng Yuxuan, Zhou Fenghua, Hu Shisheng, et al. Fragmentations of solids under impact tension. Advances in Mechanics, 2016, 46: 201612 (in Chinese))
  • Related Articles

    [1]Zhi Peng, Wu Yuching. GRAPH NEURAL NETWORKS ACCELERATED GRANULAR FLOW BASED ON DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3601-3611. DOI: 10.6052/0459-1879-24-269
    [2]Li Wen, Liu Qipeng, Gao Yuehua, Chu Xihua, Zhang Zhao, Wang Zhenjun. INVESTIGATION INTO SLM BLADE INCLINATION EFFECT ON POWDER SPREADING BEHAVIOR BASED ON DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 774-784. DOI: 10.6052/0459-1879-23-462
    [3]Zhang Wei, Xiao Weijian, Yuan Chuanniu, Zhang Ning, Liu Kun. EFFECT OF PARTICLE SIZE DISTRIBUTION ON FORCE CHAIN EVOLUTION MECHANISM IN IRON POWDER COMPACTION BY DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2489-2500. DOI: 10.6052/0459-1879-22-204
    [4]Sun Yuanyuan, Jiang Wugui, Xu Gaogui, Chen Tao, Mao Longhui. INFLUENCE OF ROUGH SURFACE OF DEPOSITED AREA ON QUALITY OF POWDER SPREADING DURING SELECTIVE LASER MELTING: DISCRETE ELEMENT SIMULATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3217-3227. DOI: 10.6052/0459-1879-21-399
    [5]Chen Hui, Yan Wentao. DYNAMIC BEHAVIOURS OF POWDER PARTICLES IN SELECTIVE LASER MELTING ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3206-3216. DOI: 10.6052/0459-1879-21-403
    [6]Duan Zongyang, Zhao Yunhua, Xu Zhang. CHARACTERIZATION OF NEAR-WALL PARTICLE DYNAMICS BASED ON DISCRETE ELEMENT METHOD ANDARTIFICIAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2656-2666. DOI: 10.6052/0459-1879-21-313
    [7]Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. RESEARCH ON THE EFFECTS OF ROLLER-SPREADING PARAMETERS FOR NYLON POWDER SPREADABILITY IN ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2416-2426. DOI: 10.6052/0459-1879-21-240
    [8]Tan Yuanqiang, Xiao iangwu, Zhang Jiangtao, Jiang Shengqiang. DETERMINATION OF DISCRETE ELEMENT MODEL CONTACT PARAMETERS OF NYLON POWDER AT SLS PREHEATING TEMPERATURE AND ITS FLOW CHARATERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 56-63. DOI: 10.6052/0459-1879-18-341
    [9]Wang Zenghui, Li Xikui. MESO-MECHANICALLY INFORMED MACROSCOPIC CHARACTERIZATION OF DAMAGE-HEALING-PLASTICITY FOR GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 284-296. DOI: 10.6052/0459-1879-17-362
    [10]Xue Huaqing, Xu Ruina, Jiang Peixue, Zhou Shangwen. CHARACTERIZATION OF ROCK MICROSTRUCTURE USING 3D X-RAY COMPUTED TOMOGRAPHY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1073-1078. DOI: 10.6052/0459-1879-15-102
  • Cited by

    Periodical cited type(1)

    1. 李雯,刘其鹏,高月华,楚锡华,张昭,王振军. 基于离散元法的SLM刮刀倾角对粉末铺展行为的影响研究. 力学学报. 2024(03): 774-784 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1572) PDF downloads (269) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return