EI、Scopus 收录
中文核心期刊
Li Pan, Hao Zhiming, Zhen Wenqiang. A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 329-338. DOI: 10.6052/0459-1879-17-386
Citation: Li Pan, Hao Zhiming, Zhen Wenqiang. A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 329-338. DOI: 10.6052/0459-1879-17-386

A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS

  • Received Date: November 19, 2017
  • Non-ordinary state-based peridynamics suffers from zero-energy mode due to nodal integration. Instabilities of displacement, stress and strain fields are induced and they will affect the computational precision or even ruin the results. Thus, the zero-energy mode needs to be suppressed. However, so far there are no effective zero-energy mode control methods. To address this issue, this work proposes a general and high efficient control method. The specific form of the elastic coefficient tensor corresponding to the nonuniform part of deformation is proposed according to linearized bond-based peridynamic theory in which the difference of micromodulus of different bonds is considered. The force state incorporated by nonuniform deformation is derived through minimum potential principle. The stabilized force state is arrived at by adding the nonuniform force state to the peridynamic force state. The linearlized bond-based peridynamics based stabilized correspondence material model is established and applied to the simulation of the elastic properties and damage process of the plate with a circular hole and the three point bend specimen. The numerical results indicate that the proposed model is effective for controlling zero-energy mode in non-ordinary state-based peridynamics. In comparison with existing zero-energy mode control methods, it has definite physical meaning and the complicated process of adjusting parameters is avoided. Hence, the computational efficiency is evidently improved.
  • [1] 黄丹, 章青, 乔丕忠等. 近场动力学方法以及应用. 力学进展, 2010, 40(4): 448-459
    [1] (Huang Dan, Zhang Qing, Qiao Peizhong, et al.A review on peridynamics method and its applications.Advances in Mechanics, 2010, 40(4): 448-459 (in Chinese))
    [2] Madenci E, Oterkus E.Peridynamic theory and its applications. New York: Springer Science and Business Media, 2014
    [3] 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响. 力学学报, 2016, 49(5): 1088-1095
    [3] (Zhang Jun, Jia Hong.Influence of cohesive models shape on adhesively bonded joints.Chinese Journal of Theoretical and Applied Mechanics, 2016, 49(45): 1088-1095 (in Chinese))
    [4] 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347
    [4] (Zhang Peng, Du Chengbin, Jiang Shouyan.Crack face contact problem analysis using the scaled boundary finite element method.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese))
    [5] 何超, 周顺华, 狄宏规等. 饱和土-隧道动力响应的2.5维有限元-边界元耦合模型. 力学学报, 2017, 49(1): 126-136
    [5] (He Chao, Zhou Shunhua, Di Honggui, et al.A 2.5-D coupled FE-BE model for the dynamic interaction between tunnel and saturated soil.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 126-136 (in Chinese))
    [6] Lehoucq RB, Silling SA.Force flux and the peridynamic stress tensor.Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1566-1577
    [7] Weckner O, Brunk G, Epton MA, et al.Comparison between local elasticity and non-local peridynamics. Sandia National Laboratory Report, SAND2009-1109J, Albuquerque, New Mexico, 2009
    [8] Gerstle W, Sau N, Silling SA.Peridynamic modeling of concrete structures.Nuclear Engineering and Design, 2007, 237(12-13): 1250-1258
    [9] Kilic B, Agwai A, Madenci E.Peridynamic theory for progressive damage prediction in center-cracked composite laminates.Composite Structures, 2009, 90(2): 141-151
    [10] Silling SA, Askari E.A meshfree method on the peridynamic model of solid mechanics.Computers and Structures, 2005, 83: 1526-1535
    [11] 谷新保, 周小平. 含圆孔拉伸板的近场动力学数值模拟. 固体力学学报, 2015, 36(5): 376-383
    [11] (Gu Xinbao, Zhou Xiaoping.The numerical simulation of tensile plate with circular hole using peridynamic theory.Chinese Journal of Solid Mechanics, 2015, 36(5): 376-383 (in Chinese))
    [12] 刘肃肃, 余音. 复材非线性及渐进损伤的态型近场动力学模拟. 浙江大学学报, 2016, 50(5): 993-1000
    [12] (Liu Susu, Yu Yin.State-based peridynamic modeling of nonlinear behavior and progressive damage of composites.Journal of Zhejiang University, 2016, 50(5): 993-1000 (in Chinese))
    [13] Foster JT, Silling SA, Chen WW.Viscoplasticity using peridynamics.Int J Numer Meth Engng, 2010, 81: 1242-1258
    [14] Tupek MR, Rimoli JJ, Radovitzky R.An approach for incorporating classical continuum damage models in state-based peridynamics.Comput Methods Appl Mech Engrg, 2013, 263: 20-26
    [15] Ganzenmuller GC, Hiermaier S, May M.On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics.Computers & Structures, 2015, 150: 71-78
    [16] Beissel S, Belytschko T.Nodal integration of the element-free Galerkin method.Comput Methods Appl Mech Engrg, 1996, 139: 49-74
    [17] Duan QL, Li XK, Zhang HW, et al. Quadratically consistent one-point (QC1) quadrature for meshfree Galerkin methods. Comput Methods Appl Mech Engrg, 2012, 245-246: 256-272
    [18] 邵玉龙, 段庆林, 高欣等. 自适应一致性高阶无单元伽辽金法. 力学学报, 2017, 49(1): 105-116
    [18] (Shao Yulong, Duan Qinglin, Gao Xin, et al.Adaptive consistent high order element-free Galerkin method.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116 (in Chinese))
    [19] 杨建军, 郑健龙. 无网格局部强弱法求解不规则域问题. 力学学报, 2017, 49(3): 659-666
    [19] (Yang Jianjun, Zheng Jianlong.Meshless local strong weak (MLSW) method for irregular domain problems.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 659-666 (in Chinese))
    [20] Breitenfeld MS, Geubelle PH, Weckner O, et al.Non-ordinary state-based peridynamic analysis of stationary crack problems.Comput Methods Appl Mech Engrg, 2014, 272: 233-250
    [21] Breitenfeld MS.Quasi-static non-ordinary state-based peridynamics for the modeling of 3D fracture. [PHD Thesis]. University of Illinois at Urbana-Champaign, 2014
    [22] Wu CT, Ren B.A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal maching process.Comput Methods Appl Meth Engrg, 2015, 291: 197-215
    [23] Becker R, Lucas RL.An assessment of peridynamics for pre and post failure deformation. No. ARL-TR-5811. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate, 2011
    [24] Yaghoobi A, Chorzepa MG.Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics.Computers and Structures, 2017, 188: 63-79
    [25] Silling SA.Stability of peridynamic correspondence material models and their particle discretization.Comput Methods Appl Mech Engrg, 2017, 322: 42-57
    [26] Ren B, Fan H, Bergel GL, et al.A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves.Comput Mech, 2015, 55: 287-302
    [27] Tupek MR, Rimoli JJ, Radovitzky R.An approach for incorporating classical continuum damage models in state-based peridynamics.Comput Methods Appl Mech Engrg, 2013, 263: 20-26
    [28] Silling SA, Epton M, Wechner O, et al.Peridynamic states and constitutive modeling.Journal of Elasticity, 2007, 88(2): 151-184
    [29] Yaghoobi A, Chorzepa MG, Kim SS, et al.Mesoscale fracture analysis of multiphase cementitious composites using peridynamics.Materials, 2017, 10(2):162
    [30] Ouchi H.Development of peridynamics-based hydraulic model for fracture growth in heterogeneous reservoirs. [PhD Thesis]. Austin: The University of Texas, 2016
    [31] Huang D, Lu GD, Qiao PZ. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 2015, 94-95: 111-122
    [32] Zhou XP, Wang YT, Xu XM.Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics.Int J Fract, 2016, 201: 213-234
    [33] Yaghoobi A, Chorzepa MG.Meshless modeling framework for fiber reinforced concrete structures.Computers and Structures, 2015, 161: 43-54
    [34] Silling SA.Reformulation of elasticity theory for discontinuities and long-range forces.Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209
    [35] Macek RW, Silling SA.Peridynamics via finite element analysis.Finite Elements in Analysis and Design, 2007, 43: 1169-1178
    [36] Liu C, Cady CM, Rae PJ, et al. On the quantitative measurement of fracture toughness in high explosive and mock materials. No.LA-UR-10-01480, LA-UR-10-1480. Los Alamos National Laboratory (LANL), 2010
  • Related Articles

    [1]Wu Jianying. ON THE UNIFIED PHASE-FIELD THEORY FOR DAMAGE AND FAILURE IN SOLIDS AND STRUCTURES: THEORETICAL AND NUMERICAL ASPECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329. DOI: 10.6052/0459-1879-20-295
    [2]Lu Guangda, Chen Jianbing. CRACKING SIMULATION BASED ON A NONLOCAL MACRO-MESO-SCALE DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 749-762. DOI: 10.6052/0459-1879-19-319
    [3]Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. DOI: 10.6052/0459-1879-16-152
    [4]The elasto-plastic damage constitutive relations of orthotropic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 67-75. DOI: 10.6052/0459-1879-2009-1-2006-585
    [5]A microstructure-based damage constitutive model for pearlitic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 85-92. DOI: 10.6052/0459-1879-2007-1-2006-229
    [6]Jianguo Ning, Zhiwu Zhu. Constitutive model of frozen soil with damage and numerical simulation of the coupled problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 70-76. DOI: 10.6052/0459-1879-2007-1-2006-177
    [7]COHESIVE INTERFACE ELEMENT AND INTERFACIAL DAMAGE ANALYSIS OF COMPOSITES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 372-377. DOI: 10.6052/0459-1879-1999-3-1995-043
    [8]A STUDY OF DAMAGE MECHANICS THEORY IN FRACTIONAL DIMENSIONAL SPACE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 300-310. DOI: 10.6052/0459-1879-1999-3-1995-035
    [9]THE VARIATIONAL PRINCIPLE FOR ELASTIC CREEP-DAMAGE PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 629-634. DOI: 10.6052/0459-1879-1992-5-1995-784
    [10]THE VOIDING DAMAGE INDUCED IN MATERIAL EMBEDDING FLAWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 181-189. DOI: 10.6052/0459-1879-1991-2-1995-825
  • Cited by

    Periodical cited type(7)

    1. 林哲,汪磊,古泉. 一种新型稳定可结合三维本构的近场动力学方法. 厦门大学学报(自然科学版). 2024(02): 305-314 .
    2. 刘浩,王兵,刘战强,李亮亮,蔡玉奎,宋清华. Ti_2AlNb切削切屑形成过程近场动力学仿真及试验研究. 航空制造技术. 2023(05): 68-75 .
    3. 李志远,黄丹,Timon Rabczuk. 近场动力学算子方法. 力学学报. 2023(07): 1593-1603 . 本站查看
    4. 左鹏飞,刘财,郭智奇,冯晅. 基于近场动力学理论的裂纹模型波场数值模拟及频散特性分析. 吉林大学学报(地球科学版). 2023(04): 1250-1261 .
    5. 吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报. 2021(02): 301-329 . 本站查看
    6. 卢广达,陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报. 2020(03): 749-762 . 本站查看
    7. 吴昊一,蒋亚清,潘亭宏,王玉. 3D打印水泥基材料层间结合性能研究. 新型建筑材料. 2019(12): 5-8 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1552) PDF downloads (505) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return