EI、Scopus 收录
中文核心期刊
Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286
Citation: Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286

STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD

  • Received Date: August 21, 2017
  • It is necessary to limit maximum nominal stress for engineering structural design generally, so as to avoid that the failure of fracture or fatigue occurs. Topology optimization approach is a feasible strategy. The conventional bi-evolutionary structural optimization (BESO) method cannot effectively address the topology optimization problem with stress constraint. To overcome this limitation, this paper suggests an improved BESO method for stress-constrained topology optimization, in which the minimum compliance design problem with volume and stress constraints is considered. A global stress measure based on the K-S function is introduced to reduce the computational cost associated with the local stress constraint. Meanwhile, the stress constraint function is added to the objective function by using the Lagrange multiplier method. Moreover, the appropriate value of the Lagrangian multiplier is then determined by a bisection method so that the stress constraint is satisfied. The model of BESO method for solving stress-constrained topology optimization and its sensitivity analysis are detailed. Finally, three typical topology optimization examples are performed to demonstrate the validity of the present method, in which the stress constrained designs are compared with the traditional stiffness based designs to illustrate the merit of considering stress constraint. The optimized results indicate that the improved BESO method, as a robust algorithm with stable iterative history, achieves an ambiguous topology with clearly defined boundaries, and realizes a design that effectively reduces stress concentration effect at the critical stress areas.
  • [1] Bendsoe MP, Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering, 1988, 71(1): 197-224
    [2] Bendsoe MP, Sigmund O.Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003
    [3] Xie YM, Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures, 1993, 49(3): 885-896
    [4] 隋允康, 叶红玲, 彭细荣等. 连续体结构拓扑优化应力约束凝聚化的ICM 方法. 力学学报, 2007, 23(4): 554-563
    [4] (Sui Yunkang, Ye Hongliang, Peng Xirong, et al.The ICM method for continuum structural topology optimization with condensation of stress constraints.Chinese Journal of Theoretical Applied Mechanics, 2007, 23(4): 554-563 (in Chinese))
    [5] Wang MY, Wang X, Guo DM.A level set method for structural topology optimization.Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246
    [6] Guo X, Zhang WS, Zhong W.Doing topology optimization explicitly and geometrically—a new moving morphable components based framework.Journal of Applied Mechanics, 2014, 81(6): 081009
    [7] Sigmund O, Maute K.Topology optimization approaches.Structural and Multidisciplinary Optimization, 2013, 48(4): 1031-1055
    [8] 谢亿民, 黄晓东, 左志豪等. 渐进结构优化法 (ESO) 和双向渐进结构优化法 (BESO) 的近期发展. 力学进展, 2011, 41(4): 462-471
    [8] (Xie Yiming, Huang Xiaodong, Zuo Zhihao, et al.Recent developments of evolutionary structural optimization (ESO) and bidirectional evolutionary structural optimization (BESO) methods.Advances in Mechanics, 2011, 41(4): 462-471 (in Chinese))
    [9] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化. 航空学报, 2015, 36(6): 2662-2669
    [9] (Zhang Weihong, Guo Wenjie, Zhu Jihong.Integrated layout and topology optimization design of multi-component systems with assembly units.Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2662-2669 (in Chinese))
    [10] 龙凯, 王选, 韩丹. 基于多相材料的稳态热传导结构轻量化设计. 力学学报, 2017, 49(1): 359-366
    [10] (Long Kai, Wang Xuan, Han Dan.Structural light design for steady heat conduction using multi-material.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 359-366 (in Chinese))
    [11] 王选, 胡平, 祝雪峰等. 考虑结构自重的基于NURBS插值的3D拓扑描述函数法. 力学学报, 2016, 48(4): 1437-1445
    [11] (Wang Xuan, Hu Ping, Zhu Xuefeng, et al.Topology description function approach using NURBS interpolation for 3Dstructures with self-weight loads.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1437-1445 (in Chinese))
    [12] 隋允康, 彭细荣. 求解一类可分离凸规划的对偶显式模型DP-EM方法. 力学学报, 2017, 49(3):1135-1144
    [12] (Sui Yunkang, Peng Xirong.A dual explicit model based DPEM method for solving a class of separable convex programming.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 1135-1144 (in Chinese))
    [13] 陈文炯, 刘书田, 张永存. 基于拓扑优化的自发热体冷却用植入式导热路径设计方法. 力学学报, 2016, 48(1): 406-412
    [13] (Chen Wenjiong, Liu Shutian, Zhang Yongcun.Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 406-412 (in Chinese))
    [14] Guo X, Zhang WS, Zhang J, et al.Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons.Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711-748
    [15] Cheng GD, Jiang Z.Study on topology optimization with stress constraints.Engineering Optimization, 1992, 20(1): 129-148
    [16] Cheng GD, Guo X.ε-relaxed approach in structural topology optimization.Structural Optimization, 1997, 13(4): 258-266
    [17] Duysinx P, Bendsoe MP.Topology optimization of continuum structures with local stress constraints.International Journal for Numerical Methods in Engineering, 1998, 43(6): 1453-1478
    [18] Paris J, Navarrina F, Colominas I, et al.Topology optimization of continuum structures with local and global stress constraints.Structural and Multidisciplinary Optimization, 2009, 39(4): 419-437
    [19] Bruggi M, Venini P.A mixed FEM approach to stress-constrained topology optimization.International Journal for Numerical Methods in Engineering, 2008, 73(10): 1693-1714
    [20] Verbart A, Langelaar M, Van Keulen F.A unified aggregation and relaxation approach for stress-constrained topology optimization.Structural and Multidisciplinary Optimization, 2017, 55(1): 663-679
    [21] Holmberg E, Torstenfelt B, Klarbring A.Stress constrained topology optimization.Structural and Multidisciplinary Optimization, 2013, 48(1): 33-47
    [22] Rong JH, Xiao TT, Yu LH, et al.Continuum structural topological optimizations with stress constraints based on an active constraint technique.International Journal for Numerical Methods in Engineering, 2016, 108(4): 326-360
    [23] Le C, Norato J, Bruns T, et al.Stress-based topology optimization for continua.Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620
    [24] Yang RJ, Chen CJ.Stress-based topology optimization.Structural Optimization, 1996, 12(2-3): 98-105
    [25] Luo YJ, Kang Z.Topology optimization of continuum structures with Drucker-Prager yield stress constraints.Computers and Structures, 2012, 90: 65-75
    [26] Luo YJ, Wang MY, Kang Z.An enhanced aggregation method for topology optimization with local stress constraints.Computer Methods in Applied Mechanics and Engineering, 2013, 254: 31-41
    [27] Paris J, Navarrina F, Colominas I, et al.Block aggregation of stress constraints in topology optimization of structures.Advances in Engineering Software, 2010, 41(2): 433-441
    [28] Cai SY, Zhang WH.Stress constrained topology optimization with free-form design domains.Computer Methods in Applied Mechanics and Engineering, 2015, 289: 267-290
    [29] Wang MY, Li L.Shape equilibrium constraint: A strategy for stress-constrained structural topology optimization.Structural and Multidisciplinary Optimization, 2013, 47(2): 335-352
    [30] Zhou MD, Sigmund O.On fully stressed design and p-norm measures in structural optimization.Structural and Multidisciplinary Optimization, 2017, 56(2): 731-736
    [31] Guo X, Zhang WS, Zhong W.Stress-related topology optimization of continuum structures involving multi-phase materials.Computer Methods in Applied Mechanics and Engineering, 2014, 268: 632-655
    [32] Xia Q, Shi T, Liu S, et al.A level set solution to the stress-based structural shape and topology optimization.Computers and Structures, 2012, 90: 55-64
    [33] Guo X, Zhang WS, Wang MY, et al.Stress-related topology optimization via level set approach.Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3439-3452
    [34] Cai SY, Zhang WH, Zhu JH, et al.Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function.Computer Methods in Applied Mechanics and Engineering, 2014, 278: 361-387
    [35] 隋允康, 张学胜, 龙连春. 应力约束处理为应变能集成的连续体结构拓扑优化. 计算力学学报, 2007, 24(3): 602-608
    [35] (Sui Yunkang, Zhang Xuesheng, Long Lianchun.The ICM method of structural topology optimization with stress constraints approached by the integration of strain energies. Chinese Journal of Computational Mechanics, 2007, 24(3): 602-608 (in Chinese))
    [36] 隋允康, 边炳传. 屈曲与应力约束下连续体结构的拓扑优化. 工程力学, 2008, 25(6): 6-12
    [36] (Sui Yunkang, Bian Binchuan.Topology optimization of continuum structures under bucking and stress constraints.Engineering Mechanics, 2008, 25(6): 6-12 (in Chinese))
    [37] 隋允康,铁军.结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化. 工程力学, 2010, 27(增刊I): 224-237
    [37] (Sui Yunkang, Tie Jun.The ICM explicitation approach to structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function.Engineering Mechanics, 2010, 27(Sup. issue I): 224-237 (in Chinese))
    [38] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法. 北京:科学出版社, 2013
    [38] (Sui Yunkang, Ye Hongling.Continuum Topology Optimization Methods ICM. Beijing: Science Press, 2013 (in Chinese))
    [39] 荣见华, 葛森, 邓果等. 基于位移和应力灵敏度的结构拓扑优化设计. 力学学报, 2009, 41(4): 518-529
    [39] (Rong Jianhua, Ge Sen, Deng Guo, et al.Structural topology optimization based on displacement and stress sensitivity analysis.Chinese Journal of Theoretical Applied Mechanics, 2009, 41(4): 518-529 (in Chinese))
    [40] Munk DJ, Vio GA, Steven GP.Topology and shape optimization methods using evolutionary algorithms: A review.Structural and Multidisciplinary Optimization, 2015, 52(2): 613-631
    [41] Huang X, Xie YM.Evolutionary topology optimization of continuum structures with an additional displacement constraint.Structural and Multidisciplinary Optimization, 2010, 40(1): 409-416
    [42] Huang X, Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elements in Analysis and Design, 2007, 43(12): 1039-1049
    [43] Huang X, Li Y, Zhou SW, et al.Topology optimization of compliant mechanisms with desired structural stiffness.Engineering Structures, 2014, 79: 13-21
  • Related Articles

    [1]Dong Shuai, Shi Xiaomeng, Wang Lebing, Li Sen, Li Shunzhi, Wu Zhengren. EXACT COHERENT STATES IN CHANNEL FLOW UNDER NORMAL MAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1618-1626. DOI: 10.6052/0459-1879-23-055
    [2]Li Shuai, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION METHOD FOR INTEGRATED THERMAL PROTECTION STRUCTURE CONSIDERING TRANSIENT TEMPERATURE AND STRESS CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1288-1307. DOI: 10.6052/0459-1879-22-598
    [3]Zhang Hualin, Yang Dong, Shi Zhijun, Cai Shouyu. TOPOLOGY OPTIMIZATION OF THIN SHELL STRUCTURES BASED ON ADAPTIVE BUBBLE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1165-1173. DOI: 10.6052/0459-1879-22-562
    [4]Cai Shouyu, Zhang Weihong, Gao Tong, Zhao Jun. ADAPTIVE BUBBLE METHOD USING FIXED MESH AND TOPOLOGICAL DERIVATIVE FOR STRUCTURAL TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1235-1244. DOI: 10.6052/0459-1879-18-455
    [5]Leilei Chen, Chuang Lu, Yanming Xu, Wenchang Zhao, Haibo Chen. TOPOLOGY OPTIMIZATION ANALYSIS OF ADHESIVE SOUND ABSORBING MATERIALS STRUCTURE WITH SUBDIVISION SURFACE BOUNDARY ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 884-893. DOI: 10.6052/0459-1879-18-354
    [6]Kai Long, Xuan Wang, Liang Ji. INDEPENDENT CONTINUOUS MAPPING METHOD FOR STRESS CONSTRAINT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 620-629. DOI: 10.6052/0459-1879-18-169
    [7]Jianhua Rong, Xiaojuan Xing, Guo Deng. A structural topological optimization method with variable displacement constraint limits[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 431-439. DOI: 10.6052/0459-1879-2009-3-2007-418
    [8]Yunkang Sui, Hongling Ye, Xirong Peng, Xuesheng Zhang. The ICM method for continuum structural topology optimization with condensation of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 554-563. DOI: 10.6052/0459-1879-2007-4-2006-043
    [9]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [10]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940
  • Cited by

    Periodical cited type(32)

    1. 徐鹏飞,王丽,黎祎,赵二峰,卢太奇. 考虑破损-安全的混凝土空箱结构拓扑优化方法研究. 水利科技与经济. 2025(02): 6-11 .
    2. 高强,王健,张严,郑旭阳,吕昊,殷国栋. 拓扑优化方法及其在运载工程中的应用与展望. 机械工程学报. 2024(04): 369-390 .
    3. 张浩淳,蔡池兰,周嘉裔. 基于拓扑优化的越越障攀爬机器人抓手机构设计. 上海第二工业大学学报. 2024(03): 280-288 .
    4. 南波,王露婕,梁家聪,迟远鹏,刘文合. 基于改进BESO法连续体结构拓扑优化研究. 沈阳农业大学学报. 2024(05): 583-593 .
    5. 李瑞,李震,杨靖庭,刘连文,范金鹏. 基于双向进化遗传算法的管道钢结构支架优化设计. 结构工程师. 2023(01): 169-175 .
    6. 包世鹏,宋旭明,唐冕. 基于向量化的BESO方法灵敏度过滤快速算法. 铁道科学与工程学报. 2023(05): 1810-1820 .
    7. 江旭东,武子旺,滕晓艳. 局部有限寿命疲劳约束条件下的结构拓扑优化方法. 振动与冲击. 2023(16): 110-119 .
    8. 彭细荣,隋允康,叶红玲,铁军. 比较基于化整交融应力拓扑优化诸解法的效果. 力学学报. 2022(02): 459-470 . 本站查看
    9. 李少鹏. 基于有限元法的接触网腕臂截面拓扑优化分析. 电气化铁道. 2022(02): 17-20 .
    10. 彭细荣,隋允康,叶红玲,铁军. K-S函数集成局部性能约束的结构拓扑优化二阶逼近解法. 固体力学学报. 2022(03): 307-317 .
    11. 占金青,彭怡平,刘敏,黄志超. 基于多性能约束的连续体结构拓扑优化设计. 计算机集成制造系统. 2022(06): 1746-1754 .
    12. 张鹄志,黄垚森,李永贵,尹斌. 材料多等级双向演化结构优化算法. 铁道科学与工程学报. 2022(06): 1726-1733 .
    13. 何智成,杨丁丁,姜潮,伍毅,江和昕. 基于增材制造各向异性的强度约束拓扑优化. 中国机械工程. 2022(19): 2372-2380+2393 .
    14. 彭林欣,李知闲,项嘉诚,覃霞. 基于非线性分析的加肋板肋条位置无网格优化. 力学学报. 2022(12): 3366-3382 . 本站查看
    15. 马超,鹿鹏程,邱娜,王先兵,仇文宁. 基于强度拓扑优化的乘用车轮毂轻量化设计. 机械设计与研究. 2022(05): 122-125+129 .
    16. 吴贝尼,夏利娟. 基于改进遗传算法的双向渐进结构优化方法研究. 船舶力学. 2021(02): 193-201 .
    17. 占金青,彭怡平,龙良明,刘敏. 基于应力约束的多相材料结构拓扑优化设计. 计算机集成制造系统. 2021(01): 149-155 .
    18. 王超,徐斌,段尊义,荣见华. 面向增材制造的应力最小化连通性拓扑优化. 力学学报. 2021(04): 1070-1080 . 本站查看
    19. 丁卯,耿达,周明东,来新民. 基于变密度法的结构强度拓扑优化策略. 上海交通大学学报. 2021(06): 764-773 .
    20. 余志豪,贺红林,李冀,鄢殷期. 基于变密度法的薄壁复合壳结构阻尼减振优化. 南昌航空大学学报(自然科学版). 2021(04): 9-15 .
    21. 何一凡,赵磊. 基于应力约束的框架结构拓扑优化研究. 河南科技. 2021(28): 87-93 .
    22. 覃霞,刘珊珊,谌亚菁,彭林欣. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析. 力学学报. 2020(01): 93-110 . 本站查看
    23. 文永蓬,郑晓明,吴爱中,刘跃杰. 基于BESO算法的城市轨道车轮拓扑优化. 机械工程学报. 2020(10): 191-199 .
    24. 蒋君侠,张圣麟,朱伟东. 基于承载力分配法的多功能重载AGV结构优化. 计算机集成制造系统. 2020(08): 2083-2091 .
    25. 闫占辉,李中帅. SSWZ330重型联轴器的渐进结构拓扑优化设计. 机床与液压. 2020(22): 91-94 .
    26. 张晓鹏,康柯,杨东生. 基于相场描述的拉压不对称强度结构拓扑优化. 计算力学学报. 2020(06): 670-676 .
    27. 王旭东,王德石,刘宝. 流固耦合自重拓扑优化的区域包络线法. 应用力学学报. 2020(06): 2591-2597+2707 .
    28. 高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化. 浙江大学学报(工学版). 2020(11): 2169-2178 .
    29. 龙凯,王选,吉亮. 面向应力约束的独立连续映射方法. 力学学报. 2019(02): 620-629 . 本站查看
    30. 王选,胡平,龙凯. 考虑嵌入移动孔洞的多相材料布局优化. 力学学报. 2019(03): 852-862 . 本站查看
    31. 蔡守宇,张卫红,高彤,赵军. 基于固定网格和拓扑导数的结构拓扑优化自适应泡泡法. 力学学报. 2019(04): 1235-1244 . 本站查看
    32. 占金青,龙良明,刘敏. 热弹性结构全局应力约束拓扑优化设计. 机械科学与技术. 2019(09): 1386-1392 .

    Other cited types(46)

Catalog

    Article Metrics

    Article views (2193) PDF downloads (588) Cited by(78)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return