EI、Scopus 收录
中文核心期刊
He Tao. A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 395-404. DOI: 10.6052/0459-1879-17-197
Citation: He Tao. A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 395-404. DOI: 10.6052/0459-1879-17-197

A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION

  • Received Date: May 02, 2017
  • In this paper a partitioned strong coupling algorith is proposed for the nuerical resolution of different fluid-structure interaction (FSI) probles within the arbitrary Lagrangian-Eulerian finite eleent fraework. The incopressible viscous Navier-Stokes equations are solved by the sei-iplicit characteristic-based split (CBS) schee. Both the generalized rigid-body otion and the geoetrically nonlinear solid are taken into account. The resultant equations governing the structural otions are advanced in tie by the coposite iplicit tie integration schee that allows for a larger tie step size. In particular, the celled-based soothed finite eleent ethod is adopted for the ore accurate solution of the nonlinear elastic solid without coproising the nuerical efficiency. The oving subesh approach in conjunction with the ortho-sei-torsional spring analogy ethod is used to efficiently update the dynaic esh within the fluid doain. A ass source ter (ST) is iplanted into the pressure Poisson equation in the second step of the CBS schee in order to respect the so-called geoetric conservation law. Given the CBS schee, the ST releases the requireent on the differencing schee of the esh velocity. The partitioned iterative solution is easily achieved via the fixed-point ethod with Aitken’s △2 accelerator. The proposed ethodology is in possession of both the flexibility of coupling individual fields and the progra odularity. The flutter of an H-profile bridge deck and vortex-induced vibrations of a restrictor flap in a unifor channel flow are nuerically siulated by eans of the developed partitioned strong coupling algorith. The nuerical results are in good agreeent with the available data, and deonstrate the desirably coputational accuracy and nuerical efficiency.
  • [1] 王英学, 高波, 任文强. 高速铁路隧道缓冲结构气动载荷与结构应力特性分析. 力学学报, 2017, 49(1): 48-54
    [1] (Wang Yingxue, Gao Bo, Ren Wenqiang.Aerodynamic load and structure stress analysis on hood of high-speed railway tunnel.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 48-54 (in Chinese))
    [2] 刘晶波, 宝鑫, 谭辉等. 波动问题中流体介质的动力人工边界. 力学学报, 2017, 49(6): 1418-1427
    [2] (Liu Jingbo, Bao Xin, Tan Hui, et al.Dynamical artificial boundary for fluid medium in wave motion problems.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427 (in Chinese))
    [3] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [3] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
    [4] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47(1): 25-91
    [4] (Chen Weimin, Fu Yiqin, Guo Shuangxi, et al.Fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders.Advances in Mechanics, 2017, 47(1): 25-91 (in Chinese))
    [5] He T, Zhang K, Wang T.AC-CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using stabilized second-order pressure scheme.Communications in Computational Physics, 2017, 21(5): 1449-1474
    [6] 周岱, 何涛, 涂佳黄. 流固耦合分析的一种改进CBS 有限元算法. 力学学报, 2012, 44(3): 494-504
    [6] (Zhou Dai, He Tao, Tu Jiahuang.A modified CBS finite element approach for fluid-structure interaction.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 494-504 (in Chinese))
    [7] 陈威霖, 及春宁, 徐万海. 并列双圆柱流致振动的不对称振动和对称性迟滞研究. 力学学报, 2015, 47(5): 731-739
    [7] (Chen Weilin, Ji Chunning, Xu Wanhai.Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 731-739 (in Chinese))
    [8] 孙旭, 张家忠, 黄必武. 弹性薄膜类流固耦合问题的CBS有限元分析. 力学学报, 2013, 45(5): 787-791
    [8] (Sun Xu, Zhang Jiazhong, Huang Biwu.An application of the cbs scheme in the fluid-membrane interaction.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 787-791 (in Chinese))
    [9] 刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析. 力学学报, 2017, 49(6): 1058-1064
    [9] (Liu Zhaomiao, Nan Siqi, Shi Yi.Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1058-1064 (in Chinese))
    [10] 周岱, 何涛, 刘光众. 基于改进CIBC方法的方柱驰振预测. 水动力学研究与进展A辑, 2013, 28(4): 391-398
    [10] (Zhou Dai, He Tao, Liu Guangzhong.Numerical analysis of free rotation gallop of a rectangular cylinder using improved CIBC method.Chinese Journal of Hydrodynamics, 2013, 28(4): 391-398 (in Chinese))
    [11] He T.Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes.Wind and Structures, 2015, 20(3): 423-448
    [12] Le Tallec P, Mouro J.Fluid structure interaction with large structural displacements.Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3039-3067
    [13] Küttler U, Wall W.Fixed-point fluid-structure interaction solvers with dynamic relaxation.Computational Mechanics, 2008, 43(1): 61-72
    [14] Bai Y, Sun D, Lin J.Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES.Computers & Fluids 2010, 39(9): 1549-1561
    [15] Sun D, Owen JS, Wright NG.Application of the k-w turbulence model for a wind-induced vibration study of 2D bluff bodies.Journal of Wind Engineering and Industrial Aerodynamics 2009, 97: 77-87
    [16] He T, Zhang K.Combined interface boundary condition method for fluid-structure interaction: Some improvements and extensions.Ocean Engineering, 2015, 109: 243-255
    [17] He T.A CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using MCIBC method.Computer Methods in Applied Mechanics and Engineering, 2016, 298: 252-278
    [18] He T, Zhang K.An overview of the combined interface boundary condition method for fluid-structure interaction.Archives of Computational Methods in Engineering, 2017, 24(4): 891-934
    [19] 何涛. 流固耦合数值方法研究概述与浅析. 振动与冲击, 2018, 37(4): 184-190
    [19] (He Tao.Numerical solution techniques for fluid-structure interaction simulations: A brief review and discussion.Journal of Vibration and Shock, 2018, 37(4): 184-190 (in Chinese))
    [20] Zienkiewicz OC, Nithiarasu P, Codina R, et al.The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems.International Journal for Numerical Methods in Fluids, 1999, 31: 359-392
    [21] Normura T, Hughes TJR.An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body.Computer Methods in Applied Mechanics and Engineering, 1992, 95(1): 115-138
    [22] Bathe KJ, Ramm E, Wilson EL.Finite element formulations for large deformation dynamic analysis.International Journal for Numerical Methods in Engineering, 1975, 9(2): 353-386
    [23] Dai KY, Liu GR.Free and forced vibration analysis using the smoothed finite element method (SFEM).Journal of Sound and Vibration, 2007, 85: 803-820
    [24] Hamrani A, Habib SH, Belaidi I.CS-IGA: A new cell-based smoothed isogeometric analysis for 2D computational mechanics problems.Computer Methods in Applied Mechanics and Engineering, 2017, 315: 671-690
    [25] Bathe KJ, Noh G. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 2012, 98-99: 1-6
    [26] He T.On a partitioned strong coupling algorithm for modeling fluid-structure interaction.International Journal of Applied Mechanics, 2015, 7: 1550021
    [27] Zhang J.Accuracy of a composite implicit time integration scheme for structural dynamics.International Journal for Numerical Methods in Engineering, 2017, 109(3): 368-406
    [28] Newmark NM.A method of computation for structural dynamics.Journal of Engineering Mechanics-ASCE, 1959, 85(3): 67-94
    [29] Collatz L.The Numerical Treatment of Differential Equations. New York: Springer-Verlag, 1960
    [30] Kuhl D, Crisfield MA.Energy-conserving and decaying algorithms in nonlinear structural dynamics.International Journal for Numerical Methods in Engineering, 1999, 45: 569-599
    [31] Piperno S, Farhat C, Larrouturou B.Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application.Computer Methods in Applied Mechanics and Engineering, 1995, 124(1): 79-112
    [32] Lefrançois E.A simple mesh deformation technique for fluid-structure interaction based on a submesh approach.International Journal for Numerical Methods in Engineering, 2008, 75: 1085-1101
    [33] Markou GA, Mouroutis ZS, Charmpis DC, et al.The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems.Computer Methods in Applied Mechanics and Engineering, 2007, 196: 747-765
    [34] Jan YJ, Sheu TWH.Finite element analysis of vortex shedding oscillations from cylinders in the straight channel.Computational Mechanics, 2004, 33: 81-94
    [35] Etienne S, Garon A, Pelletier D.Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow.Journal of Computational Physics, 2009, 228: 2313-2333
    [36] He T, Zhou D, Bao Y. Combined interface boundary condition method for fluid-rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 2012,223-224: 81-102
    [37] He T, Zhou D, Han Z, et al.Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method.International Journal of Computational Fluid Dynamics, 2014, 28: 272-300
    [38] He T.A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder.International Journal of Computational Methods, 2015, 12(2): 1550012
    [39] Piperno S.Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations.International Journal for Numerical Methods in Fluids, 1997, 25: 1207-1226
    [40] Filippini G, Dalcin L, Nigro N, et al. Fluid-rigid body interaction by PETSc-FEM driven by Python. Mecánica Computacional, 2008, XXVII: 489-504
    [41] Dettmer W, Perié D.A computational framework for fluid-rigid body interaction: Finite element formulation and applications.Computer Methods in Applied Mechanics and Engineering, 2006, 195(13-16): 1633-1666
    [42] Olivier M, Dumas G, Morissette JF.A fluid-structure interaction solver for nano-air-vehicle flapping wings//Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, USA, 2009: 1-15
    [43] Baiges J, Codina R.The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems.International Journal for Numerical Methods in Engineering, 2010, 81: 1529-1557
  • Related Articles

    [1]Wei Chang, Li Shangming. FINITE ELEMENT-IMMERSED INTERFACE COUPLING METHOD BASED ON STABILIZED L2 PROJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1336-1350. DOI: 10.6052/0459-1879-24-554
    [2]Cao Yun, Zhou Ling, Fang Haoyu, Che Tongchuan. FIFTH-ORDER FINITE VOLUME MODELS OF WATER HAMMER AND FLUID-STRUCTURE INTERACTION IN PIPES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1637-1648. DOI: 10.6052/0459-1879-23-181
    [3]Hu Kai, Gao Xiaowei, Xu Bingbing. STRONG WEAK COUPLING FORM ELEMENT DIFFERENTIAL METHOD FOR SOLVING SOLID MECHANICS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2050-2058. DOI: 10.6052/0459-1879-22-087
    [4]Di Honggui, Guo Huiji, Zhou Shunhua, Wang Binglong, He Chao. MULTI COUPLING PERIODIC FINITE ELEMENT METHOD FOR CALCULATING THE DYNAMIC RESPONSE OF UNSATURATED SOIL-STRUCTURE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 163-172. DOI: 10.6052/0459-1879-21-367
    [5]Jiao Weidong, Jiang Yonghua, Li Gang, Cai Jiancheng. STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 533-543. DOI: 10.6052/0459-1879-19-292
    [6]Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
    [7]Hu Dean, Han Xu, Xiao Yihua, Yang Gang. RESEARCH DEVELOPMENTS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD AND ITS COUPLING WITH FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652. DOI: 10.6052/0459-1879-13-092
    [8]Zupeng Jia, Xijun Wei. A coupled Eulerian-Lagrangian method based on level set and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 177-182. DOI: 10.6052/0459-1879-2010-2-2008-308
    [9]一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249
    [10]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
  • Cited by

    Periodical cited type(28)

    1. 孙旭,SUHC.Steve,张家忠. 低雷诺数下偏心扭转圆柱涡激振动特性研究. 力学与实践. 2025(01): 87-97 .
    2. 郝从猛,陈学习,刘清泉,金霏阳. 基于ALE算法的连续水射流破煤特征数值模拟研究. 煤矿安全. 2024(01): 14-21 .
    3. 武硕,程志,刘巍巍,于嵩松,王亚东,樊冬梅,孙守林. 基于ALE法的海底电缆土壤覆盖物清理技术. 中国海洋平台. 2024(01): 85-90 .
    4. 毕刚,元沛杰,韩斐,付帅帅,吴捷敏,马颖. 新型射孔动态仿真模拟及适用性评价. 煤田地质与勘探. 2024(05): 67-76 .
    5. 蔡晔,黄小卫,李晓骏,王思宇,于嵩松,申卓远,武硕. 海底电缆覆盖物清理的移动射流过程仿真分析. 应用科技. 2024(04): 17-24 .
    6. 张康康,尹训强,徐舒桐. 池式快堆堆本体中液体晃动效应的研究进展. 世界地震工程. 2024(04): 179-189 .
    7. 苏杰,周长江,姜琛. 基于IS–FEM的颗粒曳力系数计算与试验验证. 力学与实践. 2023(01): 119-129 .
    8. 王天瑜,牛一龙,周健邦,王晓飞,邵丽华,韩建民. 氧化锆口腔种植体的动态植入过程分析与设计. 力学学报. 2022(01): 220-231 . 本站查看
    9. 都业鹏,李安宁,侯占举,刘剑,张丽丽. 基于流固耦合探究高血压对冠状动脉粥样硬化斑块的影响. 生物医学工程研究. 2022(02): 107-113 .
    10. 姚学昊,黄丹. 流固耦合问题的PD-SPH建模与分析. 工程力学. 2022(10): 17-25 .
    11. 邓小毛,廖子菊. 求解三维流固耦合问题的一种全隐全耦合区域分解并行算法. 力学学报. 2022(12): 3513-3523 . 本站查看
    12. 罗竹梅,聂聪,郭涛. 涡激振动驱动的柱群结构集中俘获海流能研究. 太阳能学报. 2021(04): 89-94 .
    13. 施红辉,周栋,温俊生,贾会霞. 基于ALE方法的弹性圆柱壳入水时的流固耦合模拟. 弹道学报. 2020(01): 9-14+46 .
    14. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看
    15. 任会兰,储著鑫,栗建桥,马天宝. B炸药爆炸过程中电磁辐射研究. 力学学报. 2020(04): 1199-1210 . 本站查看
    16. 姚成宝,付梅艳,韩峰,闫凯. 欧拉坐标系下具有锐利相界面的可压缩多介质流动数值方法研究. 力学学报. 2020(04): 1063-1079 . 本站查看
    17. 李炳奇,张振宇,李斌,刘小楠,杨旭辉. 基于内聚力模型的高速水流聚脲基涂层剥离破坏模型研究. 力学学报. 2020(05): 1538-1546 . 本站查看
    18. 易浩然,周坤,代胡亮,王琳,倪樵. 含集中质量悬臂输流管的稳定性与模态演化特性研究. 力学学报. 2020(06): 1800-1810 . 本站查看
    19. 李述涛,刘晶波,宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报. 2020(06): 1838-1849 . 本站查看
    20. 王郡,朱永宁,徐鉴. 自主泳动弹性绳的轨迹模拟. 力学学报. 2019(01): 198-208 . 本站查看
    21. 王旱祥,车家琪,刘延鑫,兰文剑,张砚雯,吕孝孝,杜明超. 一种新型多级分段压裂自动投球器. 天然气工业. 2019(04): 76-81 .
    22. 杨秋足,徐绯,王璐,杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法. 力学学报. 2019(03): 730-742 . 本站查看
    23. 涂佳黄,谭潇玲,邓旭辉,郭小刚,梁经群,张平. 平面剪切来流作用下串列布置三圆柱流致运动特性研究. 力学学报. 2019(03): 787-802 . 本站查看
    24. 徐建于,黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟. 力学学报. 2019(04): 998-1011 . 本站查看
    25. 涂佳黄,谭潇玲,杨枝龙,邓旭辉,郭小刚,张平. 上游静止方柱尾流对下游方柱体尾激振动效应影响. 力学学报. 2019(05): 1321-1335 . 本站查看
    26. 陈倩,张汉哲,吴钦,傅晓英,张晶,王国玉. 复合材料水翼水动力与结构强度特性数值研究. 力学学报. 2019(05): 1350-1362 . 本站查看
    27. 杜成斌,金立成,吴志勤. 基于动力响应识别结构内部缺陷的损伤指标法. 力学学报. 2019(06): 1841-1855 . 本站查看
    28. 齐朝晖,国树东,卓英鹏. 滑轮绳索系统中动态节点绳索单元. 力学学报. 2019(06): 1856-1871 . 本站查看

    Other cited types(31)

Catalog

    Article Metrics

    Article views (1626) PDF downloads (660) Cited by(59)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return