EI、Scopus 收录
中文核心期刊
Li Zhonghua, Li Zhihui, Chen Aiguo, Wu Junlin. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251. DOI: 10.6052/0459-1879-17-108
Citation: Li Zhonghua, Li Zhihui, Chen Aiguo, Wu Junlin. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251. DOI: 10.6052/0459-1879-17-108

NUMERICAL ANALYZITION OF NANO-PARTICLE FOLLOWING FEATURES FOR RAYLEIGH SCATTERING VELOCITY MEASUREMENT TEST IN LOW DENSITY WIND TUNNEL

  • Received Date: March 28, 2017
  • Accepted Date: September 28, 2017
  • Available Online: September 28, 2017
  • The scattering light intensity can be enhanced in Rayleigh scattering measurement velocity test by adding a small quantity of nano-particles into low density wind tunnel flow field. It is a key factor for the accuracy of measurement result whether nano-particles can adapt the variation of the flow velocity. To investigate the measurement velocity of nano-particle by Rayleigh scattering test whether or not can represent the local flow field velocity, a two-way coupling DSMC method used in rarefied two phase flow is applied to simulate following features of nano-particle in low density flow filed with large grads. TiO2 particles with 10 nm, 50 nm, 100 nm diameter in low density hypersonic flows around a spaceship model in M6 and M12 cases are carried out respectively. It is shown that the following features of variety size nano-particles in different rarefication flow are distinguishing, and the following feature of smaller size nano-particle is good in complex hypersonic flow. In simulation results, 10 nm nano-particle's following feature in lower rarefication of M6 is better, and good agreement with Rayleigh scattering measurement result. Following features of particle with diameter larger than 50 nm are bad, and in higher rarefication of M12, even 10 nm nano-particle's following feature become worse. This means that velocity of particle measured by Rayleigh scattering can not reflect velocity of flow field.
  • [1]
    Seasholtz RG, Panda J. Rayleigh scattering diagnostic for dynamic measurement of velocity and temperature. AIAA-99-0641, NASA/TM—2001-210698, 1999
    [2]
    Panda J, Seasholtz RG, Velocity and temperature measurement in supersonic free jets using spectrally Resolved rayleig. AIAA-99-0296, 1999
    [3]
    Seasholtz, RG, Panda J. Rayleigh scattering diagnostic for simultaneous measurements of dynamic density and velocity. AIAA-2000-0642, 2000
    [4]
    Seasholtz RG, Panda J, Elam KA. Rayleigh scattering diagnostic for dynamic measurement of velocity fluctuations in high speed jets. AIAA-2001-0847, NASA/TM—2001-210821
    [5]
    Bivolaru D, Danehy PM, Gaffney RL, et al. Direct-view multi-point two-component interferometric Rayleigh scattering velocimeter. AIAA-2008-0236, 2008
    [6]
    Mielke AF, Elam KA, Sung CJ. Multiproperty measurements at high sampling rates using Rayleigh scattering. AIAA Journal, 2009, 47(4): 850-862
    [7]
    Mielke AF, Elam KA, Clem MM. Multiple point mass flux measurement system using Rayleigh scattering. AIAA2009-528, 2009
    [8]
    Mielke AF, Clem MM, Elam KA, et al. Progress on a Rayleigh scattering mass flux measurement technique. AIAA-2010-856, 2010
    [9]
    Jacob G, Thomas J, Richard M. Diagnosis of high speed flows using filtered Rayleigh scattering. AIAA 2014-2231, 2014
    [10]
    王杰, 施翔春, 肖绪辉等. 瑞利散射用于分子流场多参数测量. 天津大学学报, 2000, 33(1): 21-24 (Wang Jie, Shi Xiangchun, Xiao Xuhui, et al. Multiplex parametric measurements for molecules flow by rayleigh scattering. Journal of Tianjin University, 2000, 33(1): 21-24 (in Chinese)
    [11]
    陈力, 杨富荣, 苏铁等. 基于法布里-珀罗干涉仪的瑞利散射测速技术研究. 光子学报, 2015, 44(1): 0112004-1-4 (Cheng Li, Yang Furong, Su Tie, et al. Interferometric Rayleigh scattering velocimetry using a Fabry-Perot interferometer. Acta Photonica Sinica, 2015, 44(1): 0112004-1-4 (in Chinese)
    [12]
    Amy FF, Kristie AE, Khairul BM. Two-point dynamic rayleigh scattering measurements in a free jet. AIAA 2016-3109, 2016
    [13]
    Jacob G, Thomas J, Nathan G. Simultaneous multi-property laser diagnostic for high speed flows using filtered rayleigh scattering. AIAA 2016-3110, 2016
    [14]
    Jacob G, Christopher L, Thomas J, et al. Measurement of dissociation fraction and temperature using laser Rayleigh scattering methods. AIAA 2016-3114, 2016
    [15]
    Guillaume B, Rémy M, Dmitry D, et al. Modeling of Rayleigh scattering imaging of detonation waves: Quantum computation of Rayleigh cross-sections and real diagnostic effects. Combustion and Flame, 2015(162): 2191-2199
    [16]
    冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究. http://wulixb.iphy.ac.cn, 2015

    (Gang Dundian, Yi Shihe, Zhao Yunfei. Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate. http://wulixb.iphy.ac.cn, 2015 (in Chinese))
    [17]
    付佳, 易仕和, 王小虎等. 高超声速平板边界层流动显示的试验研究. http://wulixb.iphy.ac.cn, 2015

    (Fu Jia, Yi Shihe, Wang Xiaohu, et al. Experimental study on flow visualization of hypersonic flat plate boundary layer. http://wulixb.iphy.ac.cn, 2015 (in Chinese))
    [18]
    李中华, 李志辉, 蒋新宇, 等. NPLS流场测量技术在高超声速风洞中纳米粒子跟随性数值仿真. 实验流体力学, 2017, 31(1): 73-39 (Li Zhonghua, Li Zhihui, Jiang Xinyu, et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 73-39 (in Chinese)
    [19]
    徐飞彬, 周全, 卢志明. 二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟. 力学学报, 2015, 47(5): 740-750 (Xu Feibin, Zhou Quan, Lu Zhiming. Numerical simulation of Brownian coagulation and mixing of nanoparticles in 2-D Rayleigh-B'enard convection. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 740-750 (in Chinese)
    [20]
    费明龙, 徐小蓉, 孙其诚等. 颗粒介质固——流态转变的理论分析及实验研究. 力学学报, 2016, 48(1): 48-55 (Fei Minglong, Xu Xiaorong, Sun Qicheng, et al. Studies on the transition between solid- and fluid-like states of granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55 (in Chinese)
    [21]
    丁珏, 李家骅, 邱骁等. 蒙特卡洛方法数值研究大气颗粒物动力学效应和辐射传输性质. 力学学报, 2016, 48(3): 557-565 (Ding Jue, Li Jiahua, Qiu Xiao, et al. Numerical study on dynamics e_ect and radiation transfer characteristics of atmospheric particle by Monte Carlo method. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 557-565 (in Chinese)
    [22]
    Gallis MA, Rader DJ, Torczynski JR. DSMC simulations of the thermophoretic force on a spherical macroscopic particle. AIAA Paper 2001-2890, 2001
    [23]
    Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994
    [24]
    Burt JM, Boyd ID. Development of a two-way coupled model for two phase rarefied flows. AIAA 2004-1351, 2004
    [25]
    Burt JM, Boyd ID. Monte carlo simulation of a rarefied multiphase plume flow. AIAA 2005-964, 2005
    [26]
    Harris AJL, Ripepe M, Hughes E A. Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli. Journal of Volcanology and Geothermal Research, 2012, 231-232: 109-131
    [27]
    Sergey FG, Alina AA, Dean CW, et al. The influence of particulates on thruster plume /shock layer interaction at high altitudes. AIAA 2005-766, 2005
    [28]
    Gallis MA, Torczynski JR., Rader DJ. An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method. Phys. Fluids, 2001, 13(11): 3482-3492
    [29]
    李洁, 任兵, 陈伟芳. 稀薄流过渡区气固两相喷流的建模与数值模拟 稀薄流过渡区气固两相喷流的建模与数值模拟. 空气动力学学报, 2005, 23(4): 484-489 (Li Jie, Ren Bing, Chen Weifang. Modeling and numerical simulation of gas-solid jet in the transitional-rarefied regime. Acta Aerodynamic Sinica, 2005, 23(4): 484-489 (in Chinese)
    [30]
    李中华, 李志辉, 彭傲平等. 一种稀薄两相流动的数值模拟方法. 空气动力学学报, 2015, 33(2): 266-271 (Li Zhonghua, Li Zhihui, Peng Aoping, et al. A numerical method for simulating rarefied two phase flow. Acta Aerodynamic Sinica, 2015, 33(2): 266-271 (in Chinese)
    [31]
    赵玉新, 易仕和, 田立丰等. 基于纳米粒子的超声速流动成像. 中国科学 E 辑, 2009, 39(12): 1911-1918 (Zhao Yuxin, Yi Shihe, Tian Lifeng, et al. Supersonic flow imaging via nanoparticles. Sci China Ser G, 2009, 39(12): 1911-1918 (in Chinese)
    [32]
    李明, 易仕和, 祝智伟等. 激光散射技术在高超声速激波与边界层干扰试验中的应用. 红外与激光工程, 2013, 42(s1): 79-83 (Li Ming, Yi Shihe, Zhu Zhiwei, et al. Application of laser scattering technique to hypersonic shock-wave and boundary layer interactions. Infrared and Laser Engineering, 2013, 42(s1): 79-83 (in Chinese)
    [33]
    田立丰, 易仕和, 赵玉新. 超声速弹头凹型光学头罩流动显示研究. 实验流体力学, 2009, 23(1): 15-17 (Tian Lifeng, Yi Shihe, Zhao Yuxin. Flow visualization of supersonic flow around a concave optical bow cap model of warhead. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 15-17 (in Chinese)
  • Related Articles

    [1]Li Zhonghua, Li Zhihui, Wu Junlin. RESEARCH ON DSMC NUMERICAL METHOD OF PHASE TRANSITION IN VACUUM PLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1356-1365. DOI: 10.6052/0459-1879-23-419
    [2]Gan Chi, Chen Song, Zhang Jun. DSMC STUDY OF MICRO-ABLATION FOR REENTRY VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1847-1857. DOI: 10.6052/0459-1879-23-112
    [3]Yang Quanshun, Fang Ming, Li Langquan, Su Siyao, Yang Yanguang. p-DSMC METHOD OF RADIATION EFFECT OF RAREFIED GAS ATOMIC WITH EXTREMELY SUPERSONIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1943-1951. DOI: 10.6052/0459-1879-22-046
    [4]Yang Chao, Sun Quanhua. ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733. DOI: 10.6052/0459-1879-18-056
    [5]Fei Fei, Fan Jing. MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 653-659. DOI: 10.6052/0459-1879-13-064
    [6]Song Chengqian, Yin Xieyuan, Qin Fenghua. THE STUDY BASED ON THE CONTINUUM MODEL FOR THE MICRO-SCALE POISEUILLE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 314-322. DOI: 10.6052/0459-1879-12-294
    [7]Jianzheng Jiang, Qing ShenJing Fan. Gas flows through micro-pipes with different cross-section shapes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 145-152. DOI: 10.6052/0459-1879-2007-2-2005-377
    [8]Chong Xie, Jing Fan. Assessment of second-order velocity-slip boundary conditions of the navier-stokes equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-6. DOI: 10.6052/0459-1879-2007-1-2005-577
    [9]PROGRAM MARKING OF SURFACE ELEMENTS ANDTHE DETERMINATION OF MOLECULAR SURFACEREFLECTION IN POSITION ELEMENTALGORITHM OF DSMC METHOD~1)'2)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(6): 671-676. DOI: 10.6052/0459-1879-1999-6-1995-080

Catalog

    Article Metrics

    Article views (989) PDF downloads (286) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return