EI、Scopus 收录
中文核心期刊
Zhang Keshi, Huang Shihong, Liu Guilong, Lu Damin. MEASURING SUBSEQUENT YIELD SURFACE OF PURE COPPER BY CRYSTAL PLASTICITY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 870-879. DOI: 10.6052/0459-1879-17-074
Citation: Zhang Keshi, Huang Shihong, Liu Guilong, Lu Damin. MEASURING SUBSEQUENT YIELD SURFACE OF PURE COPPER BY CRYSTAL PLASTICITY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 870-879. DOI: 10.6052/0459-1879-17-074

MEASURING SUBSEQUENT YIELD SURFACE OF PURE COPPER BY CRYSTAL PLASTICITY SIMULATION

  • Received Date: March 07, 2017
  • Available Online: May 18, 2017
  • With the methods of single-specimen and multiple-specimen, the subsequent yield surfaces of the copper underwent tension, torsion and combined tension torsion pre-deformation respectively are studied by crystal plasticity simulation comparing with the real test employing thin-walled tubular specimens. Not the variances of measured subsequent yield surface but also the phenomena of subsequent yield surface appearing concave are discussed under considering different conditions, including different pre-deformation, the number of probing point, the test sequence of the probing points, and the specified offset strain, etc. On this basis, the rationality and validity of the two methods for subsequent yield testing are compared. The simulations probing yield surface are conducted using the FE model of thin-walled tubular specimen, in which the crystal lattice orientation for each element is arranged randomly, associated with a modified crystal plasticity constitutive model that is able to reflecting the Bauschinger effect for material under reversed loading, so that the deformation characteristic of polycrystal can be exhibited. The loading procedure of modeling test is designed as same as the real test. The investigated results show that:(1) the proposed simulation method can reproduce the real test procedure, the simulated subsequent yield phenomena are found fairly consistent with that observed in actual experimental measurements, which confirmed the rationality and validity of the method; (2) both the simulated and real tests show that the subsequent yield surface measured by using the thin-walled tube under combination of tension-torsion load may be concave, and the result tested by the single specimen method is more obvious in yield surface concave no matter for simulated or real test; (3) if the test material is fairly consistent in quality, the multiple-specimen method should be more reasonable than the single-specimen method for subsequent yield surface test.
  • [1]
    Hu GJ, Huang SH, Lu DM, et al. Subsequent yielding of polycrystalline aluminum after cyclic tension-compression analyzed by experiments and simulations. International Journal of Solids and Structures, 2015, 56-57: 142-153 doi: 10.1016/j.ijsolstr.2014.11.022
    [2]
    Khan AS, Pandey A, Stoughton T. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part Ⅲ: Yield surface in tension--tension stress space (Al 6061--T 6511 and annealed 1100 Al). International Journal of Plasticity, 2010, 26(10): 1432-1441 doi: 10.1016/j.ijplas.2009.07.007
    [3]
    Phillips A, Tang JL. The effect of loading path on the yield surface at elevated temperature. International Journal of Solids and Structures, 1972, 8: 464-474
    [4]
    Sung SJ, Liu LW, Hong HK, et al. Evolution of yield surface in the 2D and 3D stress spaces. International Journal of Solids and Structures, 2011, 48: 1054-1069 doi: 10.1016/j.ijsolstr.2010.12.011
    [5]
    胡桂娟, 刘贵龙, 苏莹等.金属的后继屈服面研究------单试样与多试样测试.固体力学学报, 2014, 35(3): 249-258 http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201403004.htm

    Hu Guijuan, Liu Guilong, Su Ying, et al. Study on subsequent yield surfaces tested by using single and multiple specimen. Acta Solida Mechanica Sinica, 2014, 35(3): 249-258 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201403004.htm
    [6]
    Francois M. A plasticity model with yield surface distortion for non proportional loading. International Journal of Plasticity, 2001, 17(5): 703-717 doi: 10.1016/S0749-6419(00)00025-5
    [7]
    Zhang MJ, Benítez JM, Montáns FJ. Capturing yield surface evolution with a multilinear anisotropic kinematic hardening model. International Journal of Solids and Structures, 2016, 81: 329-336 doi: 10.1016/j.ijsolstr.2015.11.030
    [8]
    Clausmeyer T, Svendsen B. Comparison of two models for anisotropic hardening and yield surface evolution in bcc sheet steels. European Journal of Mechanics A/Solids, 2015, 54: 120-131 doi: 10.1016/j.euromechsol.2015.05.016
    [9]
    Hammi Y, Stone TW, Paliwal B, et al. Smooth yield surface constitutive modeling for granular materials. ASME Journal of Engineering Materials and Technology, 2017, 139(1): 011010
    [10]
    Hill R, Rice JR. Constitutive analysis of elastic-plastic crystal at arbitrary strain. Journal of Mechanics and Physics of Solids, 1972, 20: 401-413 doi: 10.1016/0022-5096(72)90017-8
    [11]
    Asaro RJ, Rice JR. Strain localization in ductile single crystals. Journal of Mechanics and Physics of Solids, 1977 25: 309-338 doi: 10.1016/0022-5096(77)90001-1
    [12]
    Needleman A, Asaro RJ, Lemonds J, et al. Finite element analysis of crystalline solids. Computer Methods in Applied Mechanics and Engineering, 1985, 52: 689-708 doi: 10.1016/0045-7825(85)90014-3
    [13]
    Sarma G, Zacharia G. Integration algorithm for modeling the elastoviscoplastic response of polycrystalline materials. Journal of Mechanics and Physics of Solids, 1999, 47: 1219-1238 doi: 10.1016/S0022-5096(98)00105-7
    [14]
    Kalidindi SR, Schoenfeld SE. On the prediction of yield surfaces by the crystal plasticity models for fcc polycrystals. Materials Science and Engineering A, 2000, 293: 120-129 doi: 10.1016/S0921-5093(00)01048-0
    [15]
    付强, 刘芳, 张晶等.一种基于物理机制的后继屈服面演化模型.力学学报, 2010, 42(5): 880-888 doi: 10.6052/0459-1879-2010-5-lxxb2009-315

    Fu Qiang, Liu Fang, Zhang Jing, et al. A physically motivated model for the evolution of subsequent yield surface. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 880-888 (in Chinese) doi: 10.6052/0459-1879-2010-5-lxxb2009-315
    [16]
    张克实.多晶体变形、应力的不均匀性及宏观响应.力学学报, 2004, 36(6): 714-723 http://lxxb.cstam.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=141265

    Zhang Keshi. Microscopic heterogeneity and macroscopic mechanical behavior of a polycrystalline material. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36, 714-723 (in Chinese) http://lxxb.cstam.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=141265
    [17]
    Zhang KS, Wu MS, Feng R. Simulation of micro plasticity induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. International Journal of Plasticity, 2005, 21: 801-834 doi: 10.1016/j.ijplas.2004.05.010
    [18]
    张克实, 石艳柯, 许凌波等.对称拉压循环下金属屈服硬化的各向异性与细观变形转动的不均匀性.金属学报, 2011, 10(47): 1292-1300 http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201110012.htm

    Zhang Keshi, Shi Yanke, Xu Linbo, et al. Anisotropy of yielding/hardening and micro inhomogeneity of deforming/rotating for a polycrystalline metal under cyclic tension--compression. Acta Metallurgica Sinica, 2011, 10(47): 1292-1300 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201110012.htm
    [19]
    Zhang KS, Shi YK, Ju JW. Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mechanics of Materials, 2013, 64: 76-90 doi: 10.1016/j.mechmat.2013.05.001
    [20]
    Soyarslan C, Klusemann B, Bargmann S. The effect of yield surface curvature change by cross hardening on forming limit diagrams of sheets. International Journal of Mechanical Sciences, 2016, 117: 53-66 doi: 10.1016/j.ijmecsci.2016.07.028
    [21]
    Rokhgireh H, Nayebi A, Chaboche JL. Application of a new distortional yield surface model in cyclic uniaxial and multiaxial loading. International Journal of Solids and Structures, 2017, 110-111: 219-238 doi: 10.1016/j.ijsolstr.2017.01.026
    [22]
    Rokhgireh H, Nayebi A. Modeling of non-proportional cyclic loading with a simple yield surface distortion. Mechanics Research Communications, 2016, 72: 87-92 doi: 10.1016/j.mechrescom.2016.01.012
    [23]
    张健, 赵桂平, 卢天健.闭孔泡沫铝的多轴唯象受压本构参数, 力学学报, 2015, 47 (4): 651-663 doi: 10.6052/0459-1879-15-086

    Zhang Jian, Zhao Guiping, Lu Tianjian. Multiaxial phenomenological compressible constitutive parameters for closed-cell aluminum foams. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47 (4): 651-663 (in Chinese) doi: 10.6052/0459-1879-15-086
    [24]
    Feng L, Zhang G, Zhang KS. Discussion of cyclic plasticity and viscoplasticity of single crystal nickel-based superalloy in large strain analysis: Comparison of anisotropic macroscopic model and crystallographic model. International Journal of Mechanical Science, 2004, 46: 1157-1171 doi: 10.1016/j.ijmecsci.2004.08.003
    [25]
    Hutchinson JW. Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London, 1976, A348: 101-127
    [26]
    Chaboche JL. On some modifications of kinematic hardening to improve the description of ratchetting effects. International Journal of Plasticity, 1991, 7: 661-678 doi: 10.1016/0749-6419(91)90050-9
    [27]
    Walker KP. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships. Report PWA-5700-50, 1981, NASA CR-165533
    [28]
    Pan J, Rice JR. Rate sensitivity of plastic flow and implications for yield-surface vertices. International Journal of Solids and Structures, 1983, 19: 973-987 doi: 10.1016/0020-7683(83)90023-9
    [29]
    Hutchinson JW. Elastic-plastic behaviour of polycrystalline metals and composites. Proceedings of the Royal Society of London, 1970, A319: 247-272
    [30]
    Chang YW, Asaro RJ. An experimental study of shear localization in aluminum-copper single crystals. Acta Metallurgica, 1981, 29: 241-257 doi: 10.1016/0001-6160(81)90103-6
    [31]
    戴云彤, 陈振宁, 朱飞鹏等.小尺寸低碳钢试件吕德斯效应的三维数字图像相关测量.力学学报, 2015, 47 (1): 119-126 doi: 10.6052/0459-1879-14-175

    Dai Yuntong, Chen Zhenning, Zhu Feipeng, et al. Measurement of Lüders band in small size low carbon steel specimen by 3D digital image correlation method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 119-126 (in Chinese) doi: 10.6052/0459-1879-14-175
    [32]
    Zhang KS, Ju JW, Li Z, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mechanics of Materials, 2015, 85: 16-37 doi: 10.1016/j.mechmat.2015.01.020
  • Related Articles

    [1]Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. CRYSTAL PLASTIC FINITE ELEMENT SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT-GRAINED MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149
    [2]Yu Fei, Lian Yanping, Li Mingjian, Gao Ruxin. CRYSTAL PLASTICITY FINITE CELL SELF-CONSISTENT CLUSTERING ANALYSIS METHOD FOR METAL ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1916-1930. DOI: 10.6052/0459-1879-23-624
    [3]Zhou Rui, Xiong Yukai, Chu Jielei, Kan Qianhua, Kang Guozheng, Zhang Xu. PARAMETER IDENTIFICATION OF NONLOCAL CRYSTAL PLASTIC MODEL BASED ON MACHINE LEARNING AND GENETIC ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 751-762. DOI: 10.6052/0459-1879-23-479
    [4]Luo Shichao, Zhang Zhigang, Liu Jun, Gong Hongming, Hu Shouchao, Wu Liyin, Chang Yu, Zhuang Yu, Li Xian, Huang Chengyang. PROGRESS IN THE HIGH TEMPERATURE THERMOCHEMICAL NON-EQUILIBRIUM AEROTHERMAL TEST AND SIMULATION TECHNOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2439-2452. DOI: 10.6052/0459-1879-23-196
    [5]Xiong Yukai, Zhao Jianfeng, Rao Wei, Huang Zhiyong, Kang Guozheng, Zhang Xu. SECONDARY ORIENTATION EFFECTS OF NI-BASED ALLOYS WITH COOLING HOLES: A STRAIN GRADIENT CRYSTAL PLASTICITY FEM STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133. DOI: 10.6052/0459-1879-22-497
    [6]Zhao Boyu, Hu Weiping, Meng Qingchun. MICROSCOPIC DAMAGE MODEL CONSIDERING THE RESOLVED NORMAL STRESS ON CRYSTAL SLIP PLANE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1355-1366. DOI: 10.6052/0459-1879-20-454
    [7]Xiong Jun, Li Zhenhuan, Zhu Yaxin, Huang Minsheng. MICROSTRUCTURE EVOLUTION MECHANISM BASED CRYSTAL-PLASTICITY CONSTITUTIVE MODEL FOR NICKEL-BASED SUPERALLOY AND ITS FINITE ELEMENT SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 763-781. DOI: 10.6052/0459-1879-17-183
    [8]Liu Liqin, Guo Ying, Zhao Haixiang, Tang Yougang. DYNAMIC MODELING, SIMULATION AND MODEL TESTS RESEARCH ON THE FLOATING VAWT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307. DOI: 10.6052/0459-1879-16-264
    [9]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [10]DISCRETE SLIP MODEL OF CRYSTALS AND FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 278-286. DOI: 10.6052/0459-1879-1997-3-1995-227
  • Cited by

    Periodical cited type(4)

    1. 王成,胡兴远,李开发,李坤,王龙,王传礼. 表面机械研磨处理纯铜的宏-细观耦合数值研究. 稀有金属材料与工程. 2021(11): 3957-3965 .
    2. 任一方,蓝永庭,王帅,孙有平,李启袭. 考虑细观变形特征的镁合金宏观本构模型及数值模拟. 应用力学学报. 2020(04): 1582-1589+1862 .
    3. 石车嗣,黄家欢,张克实. 轴向和扭转循环加载下HRB335钢的力学行为研究. 广西大学学报(自然科学版). 2020(04): 732-740 .
    4. 王雪强,剧成健,兑关锁. 共线式热电发电机在侧面散热情况下的性能. 力学学报. 2019(01): 192-197 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (1368) PDF downloads (399) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return