EI、Scopus 收录
中文核心期刊
Zhang Peijie, Lin Jianzhong. REVIEW OF SOME RESEARCHES ON SUSPENSION OF SOLID PARTICLE IN NON-NEWTONIAN FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 543-549. DOI: 10.6052/0459-1879-17-038
Citation: Zhang Peijie, Lin Jianzhong. REVIEW OF SOME RESEARCHES ON SUSPENSION OF SOLID PARTICLE IN NON-NEWTONIAN FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 543-549. DOI: 10.6052/0459-1879-17-038

REVIEW OF SOME RESEARCHES ON SUSPENSION OF SOLID PARTICLE IN NON-NEWTONIAN FLUID

  • Received Date: February 12, 2017
  • Available Online: April 05, 2017
  • Suspension of solid particle in non-Newtonian fluid has a wide range of applications, and its special flow properties make it the core breakthrough point in some new technology fields. Meanwhile, the flow is more complex. Even in the case of low particle concentration, the characteristics of non-Newtonian fluid have an important influence on the microstructure of the whole system, which further affects the movement of solid particles. In this paper, the non-Newtonian fluid equation, particle motion equation and characteristic parameter of suspension of solid particle in non-Newtonian fluid are given, and the effect of these parameters is analyzed. The research findings, result analysis and open questions of some topics including the radial motion of single solid particle in a pipe, the interaction and aggregation of multi-particles, the chain structure formed by multi-particles, and motion of non-spherical particles are related. Finally, the topics mentioned above are summarized and prospected, and the concrete problems and contents that need to be studied deeply are given, which is aimed at providing references and basis for further research.
  • [1]
    宋晓阳, 及春宁, 许栋.明渠湍流边界层中颗粒的运动及分布.力学学报, 2015, 47(2):231-241 doi: 10.6052/0459-1879-14-164

    Song Xiaoyang, Ji Chunning, Xu Dong. Distribution and motion of particles in the turbulent boundary layer of channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):231-241 (in Chinese) doi: 10.6052/0459-1879-14-164
    [2]
    丁珏, 李家骅, 邱骁等.蒙特卡洛方法数值研究大气颗粒物动力学效应和辐射传输性质.力学学报, 2016, 48(3):557-565 http://lxxb.cstam.org.cn/CN/abstract/abstract145833.shtml

    Ding Jue, Li Jiahua, Qiu Xiao, et al. Numerical study on dynamics effect and rediation transfer characteristics of atmospheric particle by Monte Carlo method. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):557-565 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145833.shtml
    [3]
    王帅, 于文浩, 陈巨辉等.鼓泡流化床中流动特性的多尺度数值模拟.力学学报, 2016, 48(3):585-592 http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtml

    Wang Shuai, Yu Wenhao, Chen Juhui, et al. Multi-scale simulation on hydrodynamic characteristics in bubbling fluidized bed. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):585-592 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtml
    [4]
    D'Avino G, Maffettone PL. Particle dynamics in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2015, 215:80-104 doi: 10.1016/j.jnnfm.2014.09.014
    [5]
    Chhabra RP. Bubbles, Drops and Particles in Non-Newtonian Fluids. New York:Taylor & Francis Group, 2007
    [6]
    Di Carlo D, Irimia D, Tompkins RG, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 2007, 104 (48):18892-18897 doi: 10.1073/pnas.0704958104
    [7]
    Leshansky A, Bransky A, Korin N, et al. Tunable nonlinear viscoelastic "focusing" in a microfluidic device. Phys Rev Lett, 2007, 98(23):234501 doi: 10.1103/PhysRevLett.98.234501
    [8]
    Yang S, Kim JY, Lee SJ, et al. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip, 2011, 11(2):266-273 doi: 10.1039/C0LC00102C
    [9]
    Karimi A, Yazdi S, Ardekani AM. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluids, 2013, 7(2):021501 doi: 10.1063/1.4799787
    [10]
    Lim EJ, Ober TJ, Edd JF, et al. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nature Communications, 2014, 5:4120 http://people.seas.harvard.edu/~tober/Publications_files/TJO9.pdf
    [11]
    Liu C, Xue C, Chen X, Shan L, et al. Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Analytical Chemistry, 2015, 87(12):6041-6048 doi: 10.1021/acs.analchem.5b00516
    [12]
    Villone MM, Avino GD', Hulsen MA, et al. Particle motion in square channel flow of a viscoelastic liquid:migration vs. secondary flows. Journal of Non-Newtonian Fluid Mechanics, 2013, 195:1-8 doi: 10.1016/j.jnnfm.2012.12.006
    [13]
    Li G, McKinley GH, Ardekani AM. Dynamics of particle migration in channel flow of viscoelastic fluids. Journal of Fluid Mechanics, 2015, 785:486-505 doi: 10.1017/jfm.2015.619
    [14]
    Riddle MJC, Narvaez C, Bird RB. Interactions between two spheres falling along their line of centers in a viscoelastic fluid. Journal Non-Newtonian Fluid Mechanics, 1977, 2(17):23-35 http://www.academia.edu/10573503/Interactions_between_two_spheres_falling_along_their_line_of_centers_in_a_viscoelastic_fluid
    [15]
    Daugan S, Talini L, Herzhaft B, et al. Aggregation of particles settling in shear-thinning fluids. Part 1. Two-particle aggregation. The European Physical Journal E, 2002, 7(1):55 https://www.researchgate.net/publication/237430629_Aggregation_of_particles_settling_in_shear-thinning_fluids_Part_1_Two-particle_aggregation
    [16]
    Joseph DD, Liu YJ, Poletto M, et al. Aggregation and dispersion of spheres falling in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 1994, 54(6):45-86 https://www.researchgate.net/publication/222439800_Aggregation_and_dispersion_of_spheres_falling_in_viscoelastic_liquids
    [17]
    Gheissary G, van den Brule BHAA. Unexpected phenomena observed in particle settling in non-Newtonian media. Journal of NonNewtonian Fluid Mechanics, 1996, 67(1):1-18 https://www.researchgate.net/publication/223679532_Unexpected_phenomena_observed_in_particle_settling_in_non-Newtonian_media
    [18]
    Bobroff S, Phillips R. Nuclear magnetic resonance imaging investigation of sedimentation of concentrated suspensions in nonNewtonian fluids. Journal of Rheology, 1998, 42(1-2):1419-1436 https://www.researchgate.net/publication/243529792_Nuclear_magnetic_imaging_investigation_of_sedimentation_of_concentrated_suspensions_in_non-Newtonian_fluids
    [19]
    Daugan S, Talini L, Herzhaft B, et al. Sedimentation of suspensions in shear-thinning fluids. Oil & Gas Science Technology, 2004, 59(1):71-80 https://www.researchgate.net/publication/241350216_Sedimentation_of_Suspensions_in_Shear-Thinning_Fluids
    [20]
    Yu ZS, Phan-Thien N, Fan Y, et al. Viscoelastic mobility problem of a system of particles. Journal of Non-Newtonian Fluid Mechanics, 2002, 104:87-124 doi: 10.1016/S0377-0257(02)00014-9
    [21]
    Yu ZS, Wachs A, Peysson Y. Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. Journal of Non-Newtonian Fluid Mechanics, 2006, 136(2-3):126-139 doi: 10.1016/j.jnnfm.2006.03.015
    [22]
    Vaia R, Giannelis EP. Polymer nanocomposites:status and opportunities. MRS Bull, 2001, 26(5):394-401 doi: 10.1557/mrs2001.93
    [23]
    Sun X, Tabakman SM, Seo WS, et al. Separation of nanoparticles in a density gradient:FeCo@C and gold nanocrystals. Angewandte Chemie International Edition Engl, 2009, 48(5):939-942 doi: 10.1002/anie.v48:5
    [24]
    Hao J, Pan TW, Glowinski R, et al. A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids:a positive definiteness preserving approach. Journal of NonNewton Fluid Mechanics, 2009, 156(1):95-111 https://www.researchgate.net/publication/223099193_A_fictitious_domaindistributed_Lagrange_multiplier_method_for_the_particulate_flow_of_Oldroyd-B_fluids_A_positive_definiteness_preserving_approach
    [25]
    Surendra Balaji Devarakonda, Han J, Ahn CH, et al. Bioparticle separation in non-Newtonian fluid using pulsed flow in micro-channels. Microfluidics and Nanofluidics, 2007, 3(4):391-401 doi: 10.1007/s10404-006-0131-6
    [26]
    Michele J, Padzold R, Donis R. Alignment and aggregation effects in suspensions of spheres in non-Newtonian media. Rheologica Acta, 1977, 16(3):317-321 doi: 10.1007/BF01523742
    [27]
    Giesekus H. Particle movement in flows of non-Newtonian fluids. Z Angew Math Mechanics, 1978, 58:T26-T37
    [28]
    Van Loon S, Fransaer J, Clasen C, et al. String formation in sheared suspensions in rheologically complex media:the essential role of shear thinning. Journal of Rheology, 2014, 58(1):237-254 doi: 10.1122/1.4853455
    [29]
    Feng J, Huang PY, Joseph DD. Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid. Journal of Non-Newtonian Fluid Mechanics, 1996, 63(1):63-88 doi: 10.1016/0377-0257(95)01412-8
    [30]
    Won D, Kim C. Alignment and aggregation of spherical particles in viscoelastic fluid under shear flow. Journal of Non-Newtonian Fluid Mechanics, 2004, 117(2-3):141-146 doi: 10.1016/j.jnnfm.2004.01.005
    [31]
    Pasquino R, D'Avino G, Maffettone PL, et al. Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations. Journal of NonNewtonian Fluid Mechanics, 2014, 203:1-8 doi: 10.1016/j.jnnfm.2013.10.006
    [32]
    Pasquino R, Snijkers F, Grizzuti N, et al. Directed self-assembly of spheres into a two-dimensional colloidal crystal by viscoelastic stresses. Langmuir, 2010, 26(5):3016-3019 doi: 10.1021/la904775c
    [33]
    Pasquino R, Snijkers F, Grizzuti N, et al. The effect of particle size and migration on the formation of flow-induced structures in viscoelastic suspensions. Rheologica Acta, 2010, 49(10):993-1001 doi: 10.1007/s00397-010-0466-5
    [34]
    Pasquino R, Panariello D, Grizzuti N. Migration and alignment of spherical particles in sheared viscoelastic suspensions. A quantitative determination of the flow-induced self-assembly kinetics. Journal of Colloid Interface Science, 2013, 394(4):49-54 https://www.researchgate.net/publication/233983504_Migration_and_alignment_of_spherical_particles_in_sheared_viscoelastic_suspensions_A_quantitative_determination_of_the_flow-induced_self-assembly_kinetics
    [35]
    Nie DM, Lin JZ. Behavior of three circular particles in a confined power-law fluid under shear. Journal of Non-Newtonian Fluid Mechanics, 2015, 221:76-94 doi: 10.1016/j.jnnfm.2015.04.004
    [36]
    Van Loon S, Fransaer J, Clasen C, et al. String formation in sheared suspensions in rheologically complex media:the essential role of shear thinning. Journal of Rheol, 2014, 58(1):237-254 doi: 10.1122/1.4853455
    [37]
    Hwang W, Hulsen MA. Structure formation of non-colloidal particles in viscoelastic fluids subjected to simple shear flow. Macromolecular Materials & Engineering, 2011, 296(3-4):321-330 https://www.researchgate.net/publication/228046397_Structure_Formation_of_Non-Colloidal_Particles_in_Viscoelastic_Fluids_Subjected_to_Simple_Shear_Flow
    [38]
    Jaensson NO, Hulsena MA, Anderson PD. Simulations of the startup of shear flow of 2D particle suspensions in viscoelastic fluids:structure formation and rheology. Journal of Non-Newtonian Fluid Mechanics, 2015, 225:70-85 doi: 10.1016/j.jnnfm.2015.09.006
    [39]
    Kazi SN, Duffy GG, Chen XD. Validation of heat transfer and friction loss data for fibre suspensions in a circular and a coaxial pipe heat exchanger. International Journal of Thermal Sciences, 2014, 79(4):146-160 https://www.researchgate.net/profile/G_Duffy2/publication/260212861_Validation_of_heat_transfer_and_friction_loss_data_for_fibre_suspensions_in_a_circular_and_a_coaxial_pipe_heat_exchanger/links/0deec531164ee9202e000000.pdf
    [40]
    Lin JZ, Xia Y, Ku XK. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow. International Journal of Heat and Mass Transfer, 2016, 93(1):57-66 https://www.researchgate.net/publication/283801931_Flow_and_heat_transfer_characteristics_of_nanofluids_containing_rod-like_particles_in_a_turbulent_pipe_flow
    [41]
    Shao XM, Zhang XL, Yu ZS, et al. Numerical studies on the dynamics of an open triangle in a vertically oscillatory flow. Journal of Fluid Mechanics, 2016, 788:381-406 doi: 10.1017/jfm.2015.703
    [42]
    Iso Y, Koch DL, Cohen C. Orientation in simple shear flow of semidilute fiber suspensions 1. Weakly elastic fluids. Journal NonNewtonian Fluid Mech, 1996, 62(2-3):115-134 doi: 10.1016/0377-0257(95)01404-7
    [43]
    Iso Y, Koch DL, Cohen C. Orientation in simple shear flow of semidilute fiber suspensions 2. Highly elastic fluids. Journal NonNewtonian Fluid Mech, 1996, 62(2-3):135-153 doi: 10.1016/0377-0257(95)01405-5
    [44]
    Gunes DZ, Scirocco R, Mewis J, et al. Flow-induced orientation of nonspherical particles:effect of aspect ratio and medium rheology. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(1-2):39-50 doi: 10.1016/j.jnnfm.2008.05.003
    [45]
    Bartram E, Goldsmith HL, Mason SG. Particle motions in non-newtonian media llI. Further observations in elasticoviscous fluids. Rheological Acta, 1971, 14(9): 776-782 https://www.researchgate.net/publication/227016835_Particle_motions_in_non-Newtonian_media
    [46]
    Johnson SJ, Salem NJ, Fuller GG. Dynamics of colloidal particles in sheared, non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 1990, 34(1): 89-121 doi: 10.1016/0377-0257(90)80013-P
    [47]
    Gunes DZ, Scirocco R, Mewis J, et al. Flow-induced orientation of nonspherical particles: effect of aspect ratio and medium rheology. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(1-2): 39-50 doi: 10.1016/j.jnnfm.2008.05.003
    [48]
    Leal LG. The slow motion of slender rod-like particles in a second-order Fluid. Journal of Fluid Mechanics, 1975, 69(2): 305-337 doi: 10.1017/S0022112075001450
    [49]
    Harlen OG, Koch DL. Simple shear-flow of a suspension of fibers in a dilute polymer-solution at high Deborah number. Journal of Fluid Mechanics, 1993, 252: 187-207 doi: 10.1017/S0022112093003726
    [50]
    Phan-Thien N, Fan XJ. Viscoelastic mobility problem using a boundary element method. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(2-3): 131-152 doi: 10.1016/S0377-0257(02)00079-4
    [51]
    Nguyen-Hoang H, Phan-Thien N, Khoo BC. et al. Completed double layer boundary element method for periodic fibre suspension in viscoelastic fluid. Chemical Engineering Science, 2008, 63(15): 3898-3908 doi: 10.1016/j.ces.2008.04.058
    [52]
    D'Avino G, Hulsen MA, Greco F, et al. Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Physical Review E, 2014, 89(4): 043006 doi: 10.1103/PhysRevE.89.043006
  • Related Articles

    [1]Kong Fanxi, Zhu Huiling, Zhou Ling, Xu Yang, Ji Lucheng. REVIEW OF PARTICLE IMAGE VELOCIMETRY MEASUREMENT TECHNOLOGY FOR THE COMPLEX FLOW FIELD OF COMPRESSORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 335-348. DOI: 10.6052/0459-1879-24-546
    [2]Huang Yanru, Huang Ruiwen, Ma Xue, Li Zhenzhen, Teng Honghui. REVIEW OF SOLUTAL MARANGONI SPREADING ON FREE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1511-1528. DOI: 10.6052/0459-1879-23-532
    [3]Jia Fei, Yang Chengpeng, Song Yuanxiang. REVIEW ON STRENGTH FAILURE CRITERIA OF ANISOTROPIC COMPOSITE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1006-1024. DOI: 10.6052/0459-1879-23-507
    [4]Liang Shaomin, Feng Yuntian, Zhao Tingting, Wang Zhihua. A REVIEW OF NUMERICAL METHODS FOR MODELLING PARTICLE BREAKAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-22. DOI: 10.6052/0459-1879-23-215
    [5]Li Longlong, Fang Huijun, Ge Tengze, Liu Yuewu, Wang Feng, Liu Danlu, Ding Jiuge, Yu Yueyu. CO2 SEQUESTRATION IN UCG CAVITIES: RESEARCH PROGRESS AND FUTURE DEVELOPMENT TRENDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 732-743. DOI: 10.6052/0459-1879-22-538
    [6]Hu Yang, Peng Wei, Li Decai. THE EFFECTIVE VISCOSITY OF A SUSPENSION OF POROUS PARTICLES BASED ON THE DARCY-STOKES COUPLING MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1922-1929. DOI: 10.6052/0459-1879-21-144
    [7]Zhu Zhongmeng, Yang Zhuoran, Jiang Han. REVIEW OF INTERFACIAL DEBONDING BEHAVIOR OF ADHESIVE STRUCTURES WITH SOFT MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1807-1828. DOI: 10.6052/0459-1879-21-131
    [8]Li Xiao, Li Ming. A REVIEW OF ORIGAMI AND ITS CREASE DESIGN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476. DOI: 10.6052/0459-1879-18-031
    [9]Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
    [10]THE BASIC EQUATIONS FOR SUSPENSION FLOWS DERIVED THROUGH A NEW METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 122-128. DOI: 10.6052/0459-1879-1992-1-1995-719
  • Cited by

    Periodical cited type(7)

    1. 孙语晨,张玉波,李靖,南轩,袁玉麟. 泵送混凝土管道冲蚀疲劳失效数值模拟. 桂林理工大学学报. 2022(03): 628-635 .
    2. 赵鹤然,李俐莹,陈明祥. 基于非牛顿流体的AuSn20密封空洞分析. 电子与封装. 2021(12): 7-12 .
    3. 张艳涛,孙姣,高天达,范赢,陈文义. 固体颗粒对半球扰动尾迹影响的实验研究. 力学学报. 2020(03): 728-739 . 本站查看
    4. 高天达,孙姣,范赢,陈文义,轩瑞祥. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报. 2019(01): 103-110 . 本站查看
    5. 蔡文莱,黄亚军,刘伟阳,彭浩宇,黄志刚. 柔性微粒介电泳分离过程的多尺度模拟. 力学学报. 2019(02): 405-414 . 本站查看
    6. 徐海珏,吴金森,白玉川. 波浪扰动下河口幂律异重流的动力场分布特性. 力学学报. 2019(06): 1699-1711 . 本站查看
    7. 王兆伟,武晓刚,陈魁俊,薛雅楠,王宁宁,赵腾,于纬伦,王艳芹,陈维毅. 一种力–电协同驱动的细胞微流控培养腔理论模型. 力学学报. 2018(01): 124-137 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1544) PDF downloads (839) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return