Citation: | Lü Xiaohong, Luo Guanwei. TRANSITION LAW OF ADJACENT FUNDAMENTAL MOTIONS IN VIBRO-IMPACT SYSTEM WITH PROGRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1091-1102. DOI: 10.6052/0459-1879-17-037 |
[1] |
Luo GW, Xie JH. Stability of periodic motion, bifurcations and chaos of a two-degree-of-freedom vibratory system with symmetrical rigid stops. Journal of Sound and Vibration, 2004, 273(2):543-568 http://www.sciencedirect.com/science/article/pii/S0022460X03005121
|
[2] |
李群宏, 陆启韶.一类双自由度碰振系统运动分析.力学学报, 2001, 33(6):776-786 http://lxxb.cstam.org.cn/CN/abstract/abstract140990.shtml
Li Qunhong, Lu Qishao. Analysis to motions of a two-degree-of-freedom vibro-impact system. Acta Mechanica Sinca, 2001, 33(6):776-786(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140990.shtml
|
[3] |
Yue Y. The dynamics of a symmetric impact oscillator between two rigid stops. Nonlinear Analysis:Real World Applications, 2011, 12(1):741-750 doi: 10.1016/j.nonrwa.2010.08.002
|
[4] |
Nordmark AB. Piiroinen PT. Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dynamics, 2009, 58(1):85-106 doi: 10.1007/s11071-008-9463-y
|
[5] |
朱喜锋, 罗冠炜.两自由度含间隙弹性碰撞系统的颤碰运动分析.振动与冲击, 2015, 34(15):195-200 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515035.htm
Zhu Xifeng, Luo Guanwei. Chattering-impact motion of 2-DOF system with clearance and soft impacts. Journal of Vibration and Shock, 2015, 34(15):195-200(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515035.htm
|
[6] |
冯进钤, 徐伟, 牛玉俊. Duffing单边碰撞系统的颤振分岔.物理学报, 2010, 59(1):157-163 doi: 10.7498/aps.59.157
Feng Jinqian, Xu Wei, Niu Yujun. Chattering bifurcations in a Duffing unilateral vibro-impact system. Acta Physica Sinica, 2010, 59(1):157-163(in Chinese) doi: 10.7498/aps.59.157
|
[7] |
Ding WC, Xie JH, Sun QG.. Interaction of Hopf and period doubling bifurcations of a vibro-impact system. Journal of Sound and Vibration, 2004, 275(1-2):27-45 doi: 10.1016/S0022-460X(03)00740-5
|
[8] |
Wen GL, Xie JH, Xu DL. Onset of degenerate Hopf bifurcation of a vibro-impact oscillator. Journal of Applied Mechanics-Transactions of the ASME, 2004, 71(4):579-581 doi: 10.1115/1.1767163
|
[9] |
乐源.一类碰撞振动系统在内伊马克沙克——音叉分岔点附近的局部两参数动力学.力学学报, 2016, 48(1):163-172 doi: 10.6052/0459-1879-15-144
Yue Yuan. Local dynamical behavior of two-parameter family near the neimarksacker-pitchfork bifurcation point in a vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):163-172 (in Chinese) doi: 10.6052/0459-1879-15-144
|
[10] |
Li Qunhong, Lu Qishao. Coexisting periodic orbits in vibroimpacting dynamical systems. Applied Mathematics and Mechanics, 2003, 24(3):261-273 doi: 10.1007/BF02438264
|
[11] |
de Souza SLT, Caldas IL, Viana RL, et al. Basins of attraction changes by amplitude constraining of oscillators with limited power supply. Chaos, Solitons and Fractals, 2005, 26 (4):1211-1220 doi: 10.1016/j.chaos.2005.02.039
|
[12] |
Yue Y, Xie JH, Gao XJ. Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dynamics, 2012, 69(3):743-753 doi: 10.1007/s11071-011-0301-2
|
[13] |
Li QH, Tan JY. Lyapunov exponent calculation of a two-degree-offreedom vibro-impact system with symmetrical rigid stops. Chinese Physics B, 2011, 20(4):040505 doi: 10.1088/1674-1056/20/4/040505
|
[14] |
Serweta W, Okolewski A, Blazejczyk-Okolewska B, et al. Mirror hysteresis and Lyapunov exponents of impact oscillator with symmetrical soft stops. International Journal of Mechanical Sciences, 2015, 101-102(10):89-98 http://www.sciencedirect.com/science/article/pii/S0020740315002659
|
[15] |
Chávez JP, Pavlovskaia E, Wiercigroch M. Bifurcation analysis of a piecewise-linear impact oscillator with drift. Nonlinear Dynamics, 2014, 77(1-2):213-227 doi: 10.1007/s11071-014-1285-5
|
[16] |
Pavlovskaia E, Hendry DC, Wiercigroch M. Modelling of high frequency vibro-impact drilling. International Journal of Mechanical Sciences, 2015, 91(2):110-119 http://www.sciencedirect.com/science/article/pii/S002074031300221X
|
[17] |
Rusinek R, Wiercigroch M, Wahi P. Modelling of frictional chatter in metal cutting. International Journal of Mechanical Sciences, 2014, 89(12):167-176 http://www.sciencedirect.com/science/article/pii/S002074031400294X
|
[18] |
Li Xiang, Yao Zhiyuan, Wu Ranchao. Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors. International Journal of Mechanical Sciences, 2015, 100(9):23-31 http://www.sciencedirect.com/science/article/pii/S0020740315002179
|
[19] |
张思进, 周利彪, 陆启韶.线性碰振系统周期解擦边分岔的一类映射分析方法.力学学报, 2007, 37(1):132-136 http://lxxb.cstam.org.cn/CN/abstract/abstract141548.shtml
Zhang Sijin, Zhou Libiao, Lu Qishao. A map method for grazing bifurcatin in linear vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2007, 37(1):132-136(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract141548.shtml
|
[20] |
Chillingworth DRJ. Dynamics of an impact oscillator near a degenerate graze. Nonlinearity, 2010, 23(11):2723-2748 doi: 10.1088/0951-7715/23/11/001
|
[21] |
Humphries N, Piiroinen PT. A discontinuity-geometry view of the relationship between saddle-node and grazing bifurcations. Physica D, 2012, 241(22):1911-1918 doi: 10.1016/j.physd.2011.05.003
|
[22] |
Jiang H, Wiercigroch M. Geometrical insight into non-smooth bifurcations of a soft impact oscillator. Journal of Applied Mathematics, 2016, 81(4):662-678 doi: 10.1080/1468936021000041654
|
[23] |
Liu YB, Wang Q, Xu HD. Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance. Communications in Nonlinear Science and Numerical Simulation, 2017, 48(7):1-17 http://www.sciencedirect.com/science/article/pii/S1007570416305123
|
[24] |
冯进钤, 徐伟.碰撞振动系统中周期轨擦边诱导的混沌激变.力学学报, 2013, 45(1):30-36 doi: 10.6052/0459-1879-12-315
Feng Jinqian, Xu Wei. Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):30-36(in Chinese) doi: 10.6052/0459-1879-12-315
|
[25] |
Feng JQ. Analysis of chaotic saddles in a nonlinear vibro-impact system. Communications in Nonlinear Science and Numerical Simulation, 2017, 48(7):39-50 http://www.sciencedirect.com/science/article/pii/S100757041630497X
|
[26] |
Wen GL, Yin S, Xu HD. Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems. Chaos, Solitons and Fractals, 2016, 83(2):112-118 http://www.sciencedirect.com/science/article/pii/S096007791500404X
|
[27] |
Vasconcellos R, Abdelkefi A. Phenomena and characterization of grazing-sliding bifurcations in aeroelastic systems with discontinuous impact effects. Journal of Sound and Vibration, 2015, 358(12):315-323 http://www.sciencedirect.com/science/article/pii/S0022460X15007002
|
[28] |
皇甫玉高, 李群宏.一类单侧碰撞悬臂振动系统的擦边分岔分析.力学学报, 2008, 40(6):812-819 doi: 10.6052/0459-1879-2008-6-2007-522
Huangfu Yugao, Li Qunhong, Grazing bifurcation of a vibrating cantilever system with one-sided impact. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):812-819 (in Chinese) doi: 10.6052/0459-1879-2008-6-2007-522
|
[29] |
Fu XL, Zhang YY. Stick motions and grazing flows in an inclined impact oscillator. Chaos, Solitons and Fractals, 2015, 76(7):218-230 http://www.sciencedirect.com/science/article/pii/S0960077915001162
|
[30] |
Peterka F, Tondl A. Phenomena of subharmonic motions of oscillator with soft impacts. Chaos, Solitons and Fractals, 2004, 19(5):1283-1290 doi: 10.1016/S0960-0779(03)00335-7
|
[31] |
Peterka F, Blazejczyk-Okolewska B. Some aspects of the dynamical behavior of the impact damper. Journal of Vibration and Control, 2005, 11(4):459-479 doi: 10.1177/1077546304043267
|
[32] |
Luo GW, Zhu XF, Shi YQ. Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop:Diversity and evolution of periodic-impact motions. Journal of Sound and Vibration, 2015, 334(6):338-362 http://www.sciencedirect.com/science/article/pii/S0022460X14007019
|
[33] |
Wagg DJ. Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos, Solitons and Fractals, 2004, 22(3):541-548 doi: 10.1016/j.chaos.2004.03.003
|
[1] | Jin Hua, Lü Xiaohong, Zhang Zihao, Wang Xin. DISCONTINUOUS BIFURCATIONS OF COEXISTING ATTRACTORS FOR A GEAR TRANSMISSION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 203-212. DOI: 10.6052/0459-1879-22-424 |
[2] | Guo Ziyi, Zhao Jianfu, Li Kai, Hu Wenrui. BIFURCATION ANALYSIS OF THERMOCAPILLARY CONVECTION BASED ON POD-GALERKIN REDUCED-ORDER METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198. DOI: 10.6052/0459-1879-21-642 |
[3] | Ji Wenchao, Duan Lixia, Qi Huiru. BIFURCATION MECHANISM OF MIXED BURSTING IN NEURON MODEL UNDER THE ELECTROMAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1733-1746. DOI: 10.6052/0459-1879-21-071 |
[4] | Chen Ling, Tang Youqi. BIFURCATION AND CHAOS OF AXIALLY MOVING BEAMS UNDER TIME-VARYING TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1180-1188. DOI: 10.6052/0459-1879-19-068 |
[5] | Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157 |
[6] | Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng. RELAXATION BURSTING OF A FAST-SLOW COUPLED OSCILLATOR AS WELL AS THE MECHANISM OF NON-SMOOTH BIFURCATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 576-583. DOI: 10.6052/0459-1879-2012-3-20120314 |
[7] | Chuanbo Ren Jilei Zhou. Bifurcation research for piecewise linear system involved in discontinuous damping force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1191-1195. DOI: 10.6052/0459-1879-2011-6-lxxb2011-091 |
[8] | Z. G. Yao. Bifurcation, chaotic dynamics and control of piezoelectric laminated composite beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 129-140. DOI: 10.6052/0459-1879-2009-1-2008-250 |
[9] | Yourong Li, Lan Peng, Shuangying Wu, Nobuyuki Imaishi. Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 43-48. DOI: 10.6052/0459-1879-2007-1-2005-470 |
[10] | BIFURCATION STUDY OF SHALLOW ARCH UNDER PERIODIC FORCE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 83-88. DOI: 10.6052/0459-1879-1998-1-1995-101 |
1. |
魏冬梅,吕小红,王昕,金花. 塑性冲击振动系统的非光滑分岔. 机械强度. 2024(02): 264-271 .
![]() | |
2. |
刘一凡,吕小红. 小型振动冲击式打桩机的周期振动及分岔. 兰州工业学院学报. 2024(05): 80-85 .
![]() | |
3. |
吕小红,张开成,朱喜锋,罗冠炜. 两自由度碰撞振动系统的两参数非光滑分岔. 振动工程学报. 2023(01): 107-115 .
![]() | |
4. |
刘鹏飞,朱凌云,苟向锋,石建飞,金国光. 计及短周期误差的直齿轮副近周期运动及其辨识. 力学学报. 2022(03): 786-799 .
![]() | |
5. |
杨杏,韩威,石建飞. 减振镗杆系统非线性动态特性与吸振能量研究. 噪声与振动控制. 2022(04): 85-92 .
![]() | |
6. |
李航,申永军,李向红,韩彦军,彭孟菲. Duffing系统的主-亚谐联合共振. 力学学报. 2020(02): 514-521 .
![]() | |
7. |
王同慧,朱喜锋. 含干摩擦振动系统的共存吸引子与亚谐碰撞运动研究. 兰州交通大学学报. 2019(02): 121-125+147 .
![]() | |
8. |
石建飞,苟向锋,朱凌云. 两空间耦合下齿轮传动系统多稳态特性研究. 力学学报. 2019(05): 1489-1499 .
![]() | |
9. |
邢子康,申永军,李向红. 接地式三要素型动力吸振器性能分析. 力学学报. 2019(05): 1466-1475 .
![]() |