EI、Scopus 收录
中文核心期刊
Lü Xiaohong, Luo Guanwei. TRANSITION LAW OF ADJACENT FUNDAMENTAL MOTIONS IN VIBRO-IMPACT SYSTEM WITH PROGRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1091-1102. DOI: 10.6052/0459-1879-17-037
Citation: Lü Xiaohong, Luo Guanwei. TRANSITION LAW OF ADJACENT FUNDAMENTAL MOTIONS IN VIBRO-IMPACT SYSTEM WITH PROGRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1091-1102. DOI: 10.6052/0459-1879-17-037

TRANSITION LAW OF ADJACENT FUNDAMENTAL MOTIONS IN VIBRO-IMPACT SYSTEM WITH PROGRESSION

  • Received Date: February 12, 2017
  • Available Online: June 21, 2017
  • The vibro-impact phenomena which widely exists in power mechanical system will make the system exhibit complex dynamic response. So far the research on stability and bifurcation of p/1 fundamental motions of vibro-impact system is still rare, and most studies of vibro-impact dynamics are based on single-parameter bifurcation analysis. In this paper, taking a small vibro-impact driver as engineering background, a mechanical model of a vibro-impact system with progressive motions is established. Types of impact between the vibration exciter and the cushion, and conditions of progressive motions of the slider are analyzed. Judgment conditions and motion equations of four probable motion states presented by the system are put forward. Based on bifurcation analysis of two-dimensional parameters, existence regions and distribution laws of different types of periodic motions of the system are obtained in the (ω, l) parameter plane. Transition laws of adjacent p/1 fundamental motions are analyzed in detail. In the right region of the existence region of 5/1 fundamental motion, there exists a singular point Xp on the boundary between adjacent regions of p/1 fundamental motions, which is the critical point of bifurcation characteristics of adjacent p/1 fundamental motions. In the region with l less than lXp, adjacent p/1 fundamental motions are transited mutually by real-grazing bifurcation and saddle-node bifurcation. Two periodic attractors can coexist in the hysteresis region, which exists between real-grazing bifurcation boundary and saddle-node bifurcation boundary. In the region with l more than lXp, there exists a transition region between adjacent regions of p/1 fundamental motions. The system exhibits (2p + 2)/2 and (2p + 1)/2 motions in the transition region. In the left region of the existence region of 5/1 fundamental motion, p/1 fundamental motion transits to (p + 1)/1 fundamental motion via multi-sliding bifurcation.
  • [1]
    Luo GW, Xie JH. Stability of periodic motion, bifurcations and chaos of a two-degree-of-freedom vibratory system with symmetrical rigid stops. Journal of Sound and Vibration, 2004, 273(2):543-568 http://www.sciencedirect.com/science/article/pii/S0022460X03005121
    [2]
    李群宏, 陆启韶.一类双自由度碰振系统运动分析.力学学报, 2001, 33(6):776-786 http://lxxb.cstam.org.cn/CN/abstract/abstract140990.shtml

    Li Qunhong, Lu Qishao. Analysis to motions of a two-degree-of-freedom vibro-impact system. Acta Mechanica Sinca, 2001, 33(6):776-786(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140990.shtml
    [3]
    Yue Y. The dynamics of a symmetric impact oscillator between two rigid stops. Nonlinear Analysis:Real World Applications, 2011, 12(1):741-750 doi: 10.1016/j.nonrwa.2010.08.002
    [4]
    Nordmark AB. Piiroinen PT. Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dynamics, 2009, 58(1):85-106 doi: 10.1007/s11071-008-9463-y
    [5]
    朱喜锋, 罗冠炜.两自由度含间隙弹性碰撞系统的颤碰运动分析.振动与冲击, 2015, 34(15):195-200 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515035.htm

    Zhu Xifeng, Luo Guanwei. Chattering-impact motion of 2-DOF system with clearance and soft impacts. Journal of Vibration and Shock, 2015, 34(15):195-200(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515035.htm
    [6]
    冯进钤, 徐伟, 牛玉俊. Duffing单边碰撞系统的颤振分岔.物理学报, 2010, 59(1):157-163 doi: 10.7498/aps.59.157

    Feng Jinqian, Xu Wei, Niu Yujun. Chattering bifurcations in a Duffing unilateral vibro-impact system. Acta Physica Sinica, 2010, 59(1):157-163(in Chinese) doi: 10.7498/aps.59.157
    [7]
    Ding WC, Xie JH, Sun QG.. Interaction of Hopf and period doubling bifurcations of a vibro-impact system. Journal of Sound and Vibration, 2004, 275(1-2):27-45 doi: 10.1016/S0022-460X(03)00740-5
    [8]
    Wen GL, Xie JH, Xu DL. Onset of degenerate Hopf bifurcation of a vibro-impact oscillator. Journal of Applied Mechanics-Transactions of the ASME, 2004, 71(4):579-581 doi: 10.1115/1.1767163
    [9]
    乐源.一类碰撞振动系统在内伊马克沙克——音叉分岔点附近的局部两参数动力学.力学学报, 2016, 48(1):163-172 doi: 10.6052/0459-1879-15-144

    Yue Yuan. Local dynamical behavior of two-parameter family near the neimarksacker-pitchfork bifurcation point in a vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):163-172 (in Chinese) doi: 10.6052/0459-1879-15-144
    [10]
    Li Qunhong, Lu Qishao. Coexisting periodic orbits in vibroimpacting dynamical systems. Applied Mathematics and Mechanics, 2003, 24(3):261-273 doi: 10.1007/BF02438264
    [11]
    de Souza SLT, Caldas IL, Viana RL, et al. Basins of attraction changes by amplitude constraining of oscillators with limited power supply. Chaos, Solitons and Fractals, 2005, 26 (4):1211-1220 doi: 10.1016/j.chaos.2005.02.039
    [12]
    Yue Y, Xie JH, Gao XJ. Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dynamics, 2012, 69(3):743-753 doi: 10.1007/s11071-011-0301-2
    [13]
    Li QH, Tan JY. Lyapunov exponent calculation of a two-degree-offreedom vibro-impact system with symmetrical rigid stops. Chinese Physics B, 2011, 20(4):040505 doi: 10.1088/1674-1056/20/4/040505
    [14]
    Serweta W, Okolewski A, Blazejczyk-Okolewska B, et al. Mirror hysteresis and Lyapunov exponents of impact oscillator with symmetrical soft stops. International Journal of Mechanical Sciences, 2015, 101-102(10):89-98 http://www.sciencedirect.com/science/article/pii/S0020740315002659
    [15]
    Chávez JP, Pavlovskaia E, Wiercigroch M. Bifurcation analysis of a piecewise-linear impact oscillator with drift. Nonlinear Dynamics, 2014, 77(1-2):213-227 doi: 10.1007/s11071-014-1285-5
    [16]
    Pavlovskaia E, Hendry DC, Wiercigroch M. Modelling of high frequency vibro-impact drilling. International Journal of Mechanical Sciences, 2015, 91(2):110-119 http://www.sciencedirect.com/science/article/pii/S002074031300221X
    [17]
    Rusinek R, Wiercigroch M, Wahi P. Modelling of frictional chatter in metal cutting. International Journal of Mechanical Sciences, 2014, 89(12):167-176 http://www.sciencedirect.com/science/article/pii/S002074031400294X
    [18]
    Li Xiang, Yao Zhiyuan, Wu Ranchao. Modeling and sticking motion analysis of a vibro-impact system in linear ultrasonic motors. International Journal of Mechanical Sciences, 2015, 100(9):23-31 http://www.sciencedirect.com/science/article/pii/S0020740315002179
    [19]
    张思进, 周利彪, 陆启韶.线性碰振系统周期解擦边分岔的一类映射分析方法.力学学报, 2007, 37(1):132-136 http://lxxb.cstam.org.cn/CN/abstract/abstract141548.shtml

    Zhang Sijin, Zhou Libiao, Lu Qishao. A map method for grazing bifurcatin in linear vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2007, 37(1):132-136(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract141548.shtml
    [20]
    Chillingworth DRJ. Dynamics of an impact oscillator near a degenerate graze. Nonlinearity, 2010, 23(11):2723-2748 doi: 10.1088/0951-7715/23/11/001
    [21]
    Humphries N, Piiroinen PT. A discontinuity-geometry view of the relationship between saddle-node and grazing bifurcations. Physica D, 2012, 241(22):1911-1918 doi: 10.1016/j.physd.2011.05.003
    [22]
    Jiang H, Wiercigroch M. Geometrical insight into non-smooth bifurcations of a soft impact oscillator. Journal of Applied Mathematics, 2016, 81(4):662-678 doi: 10.1080/1468936021000041654
    [23]
    Liu YB, Wang Q, Xu HD. Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance. Communications in Nonlinear Science and Numerical Simulation, 2017, 48(7):1-17 http://www.sciencedirect.com/science/article/pii/S1007570416305123
    [24]
    冯进钤, 徐伟.碰撞振动系统中周期轨擦边诱导的混沌激变.力学学报, 2013, 45(1):30-36 doi: 10.6052/0459-1879-12-315

    Feng Jinqian, Xu Wei. Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):30-36(in Chinese) doi: 10.6052/0459-1879-12-315
    [25]
    Feng JQ. Analysis of chaotic saddles in a nonlinear vibro-impact system. Communications in Nonlinear Science and Numerical Simulation, 2017, 48(7):39-50 http://www.sciencedirect.com/science/article/pii/S100757041630497X
    [26]
    Wen GL, Yin S, Xu HD. Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems. Chaos, Solitons and Fractals, 2016, 83(2):112-118 http://www.sciencedirect.com/science/article/pii/S096007791500404X
    [27]
    Vasconcellos R, Abdelkefi A. Phenomena and characterization of grazing-sliding bifurcations in aeroelastic systems with discontinuous impact effects. Journal of Sound and Vibration, 2015, 358(12):315-323 http://www.sciencedirect.com/science/article/pii/S0022460X15007002
    [28]
    皇甫玉高, 李群宏.一类单侧碰撞悬臂振动系统的擦边分岔分析.力学学报, 2008, 40(6):812-819 doi: 10.6052/0459-1879-2008-6-2007-522

    Huangfu Yugao, Li Qunhong, Grazing bifurcation of a vibrating cantilever system with one-sided impact. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):812-819 (in Chinese) doi: 10.6052/0459-1879-2008-6-2007-522
    [29]
    Fu XL, Zhang YY. Stick motions and grazing flows in an inclined impact oscillator. Chaos, Solitons and Fractals, 2015, 76(7):218-230 http://www.sciencedirect.com/science/article/pii/S0960077915001162
    [30]
    Peterka F, Tondl A. Phenomena of subharmonic motions of oscillator with soft impacts. Chaos, Solitons and Fractals, 2004, 19(5):1283-1290 doi: 10.1016/S0960-0779(03)00335-7
    [31]
    Peterka F, Blazejczyk-Okolewska B. Some aspects of the dynamical behavior of the impact damper. Journal of Vibration and Control, 2005, 11(4):459-479 doi: 10.1177/1077546304043267
    [32]
    Luo GW, Zhu XF, Shi YQ. Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop:Diversity and evolution of periodic-impact motions. Journal of Sound and Vibration, 2015, 334(6):338-362 http://www.sciencedirect.com/science/article/pii/S0022460X14007019
    [33]
    Wagg DJ. Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos, Solitons and Fractals, 2004, 22(3):541-548 doi: 10.1016/j.chaos.2004.03.003
  • Related Articles

    [1]Jin Hua, Lü Xiaohong, Zhang Zihao, Wang Xin. DISCONTINUOUS BIFURCATIONS OF COEXISTING ATTRACTORS FOR A GEAR TRANSMISSION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 203-212. DOI: 10.6052/0459-1879-22-424
    [2]Guo Ziyi, Zhao Jianfu, Li Kai, Hu Wenrui. BIFURCATION ANALYSIS OF THERMOCAPILLARY CONVECTION BASED ON POD-GALERKIN REDUCED-ORDER METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198. DOI: 10.6052/0459-1879-21-642
    [3]Ji Wenchao, Duan Lixia, Qi Huiru. BIFURCATION MECHANISM OF MIXED BURSTING IN NEURON MODEL UNDER THE ELECTROMAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1733-1746. DOI: 10.6052/0459-1879-21-071
    [4]Chen Ling, Tang Youqi. BIFURCATION AND CHAOS OF AXIALLY MOVING BEAMS UNDER TIME-VARYING TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1180-1188. DOI: 10.6052/0459-1879-19-068
    [5]Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157
    [6]Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng. RELAXATION BURSTING OF A FAST-SLOW COUPLED OSCILLATOR AS WELL AS THE MECHANISM OF NON-SMOOTH BIFURCATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 576-583. DOI: 10.6052/0459-1879-2012-3-20120314
    [7]Chuanbo Ren Jilei Zhou. Bifurcation research for piecewise linear system involved in discontinuous damping force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1191-1195. DOI: 10.6052/0459-1879-2011-6-lxxb2011-091
    [8]Z. G. Yao. Bifurcation, chaotic dynamics and control of piezoelectric laminated composite beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 129-140. DOI: 10.6052/0459-1879-2009-1-2008-250
    [9]Yourong Li, Lan Peng, Shuangying Wu, Nobuyuki Imaishi. Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 43-48. DOI: 10.6052/0459-1879-2007-1-2005-470
    [10]BIFURCATION STUDY OF SHALLOW ARCH UNDER PERIODIC FORCE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 83-88. DOI: 10.6052/0459-1879-1998-1-1995-101
  • Cited by

    Periodical cited type(9)

    1. 魏冬梅,吕小红,王昕,金花. 塑性冲击振动系统的非光滑分岔. 机械强度. 2024(02): 264-271 .
    2. 刘一凡,吕小红. 小型振动冲击式打桩机的周期振动及分岔. 兰州工业学院学报. 2024(05): 80-85 .
    3. 吕小红,张开成,朱喜锋,罗冠炜. 两自由度碰撞振动系统的两参数非光滑分岔. 振动工程学报. 2023(01): 107-115 .
    4. 刘鹏飞,朱凌云,苟向锋,石建飞,金国光. 计及短周期误差的直齿轮副近周期运动及其辨识. 力学学报. 2022(03): 786-799 . 本站查看
    5. 杨杏,韩威,石建飞. 减振镗杆系统非线性动态特性与吸振能量研究. 噪声与振动控制. 2022(04): 85-92 .
    6. 李航,申永军,李向红,韩彦军,彭孟菲. Duffing系统的主-亚谐联合共振. 力学学报. 2020(02): 514-521 . 本站查看
    7. 王同慧,朱喜锋. 含干摩擦振动系统的共存吸引子与亚谐碰撞运动研究. 兰州交通大学学报. 2019(02): 121-125+147 .
    8. 石建飞,苟向锋,朱凌云. 两空间耦合下齿轮传动系统多稳态特性研究. 力学学报. 2019(05): 1489-1499 . 本站查看
    9. 邢子康,申永军,李向红. 接地式三要素型动力吸振器性能分析. 力学学报. 2019(05): 1466-1475 . 本站查看

    Other cited types(14)

Catalog

    Article Metrics

    Article views (1172) PDF downloads (631) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return