EI、Scopus 收录
中文核心期刊
Kan Ziyun, Peng Haijun, Chen Biaoshong. RIGID BODY SYSTEM DYNAMIC WITH THE ACCURATE JACOBIAN MATRIX OF SPRING-DAMPER-ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1103-1114. DOI: 10.6052/0459-1879-17-030
Citation: Kan Ziyun, Peng Haijun, Chen Biaoshong. RIGID BODY SYSTEM DYNAMIC WITH THE ACCURATE JACOBIAN MATRIX OF SPRING-DAMPER-ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1103-1114. DOI: 10.6052/0459-1879-17-030

RIGID BODY SYSTEM DYNAMIC WITH THE ACCURATE JACOBIAN MATRIX OF SPRING-DAMPER-ACTUATOR

  • Received Date: January 22, 2017
  • Available Online: May 23, 2017
  • The spring-damper-actuator (SDA) is a common force element in multibody system and widely used in the field of engineering. The governing equations of multibody dynamic system established by absolute coordinate methods are differential-algebraic equations which are usually nonlinear and complex. To ensure the stability and accuracy of the numerical solutions, the implicit algorithms are commonly used to solve the dynamic equations. While the calculations of Jacobian matrices are the crucial process in implicit algorithms. For a multibody system containing the SDA, the additional Jacobian matrices induced by the SDA are highly nonlinear functions of the generalized coordinates and generalized velocities. A lot of current research works focus on the calculation of generalized force vector, however the calculations of additional Jacobian matrices are less concerned. This paper focuses on dynamic analysis of multi-rigid-body systems containing the SDA. Firstly, the construction of the accurate Jacobian matrices in solving the dynamic equations is investigated based on the Newmark algorithm. Then, the additional Jacobian matrices relating to the generalized force vector of the SDA are analytically derived. These matrices consist of the partial derivative of generalized force vector with respect to the generalized coordinates and the generalized velocities. Finally, the influence of additional Jacobian matrices on the convergence of dynamic analysis is investigated via two numerical examples. The numerical results indicate that when the values of stiffness, damping and active force are large, the additional Jacobian matrices induced by the SDA have a significant influence on the convergence of dynamic analysis. When the additional Jacobian matrices induced by the SDA are taken into account, the dynamic analysis can achieve convergence with less iteration steps and the computational time thus can be reduced.
  • [1]
    洪嘉振.计算多体系统动力学.北京:高等教育出版社, 1999

    Hong Jiazhen, Computational Dynamics of Multibody Systems. Beijing:Higher Education Press, 1999 (in Chinese)
    [2]
    石奇端, 马履中.六自由度并联机构组合弹簧阻尼减振装置.农业机械学报, 2007, 38(8):128-131 http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200708032.htm

    Shi Qiduan, Ma Luzhong. Research on the device of 6-dof parallel mechanisms combined with elastic damping system. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(8):128-131 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200708032.htm
    [3]
    王其东, 陈无畏, 张炳力.基于多体模型的汽车半主动悬架控制方法研究.机械工程学报, 2004, 40(1):104-108 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200401020.htm

    Wang Qidong, Chen Wuwei, Zhang Bingli. Study on the control method of automobile semi-active suspension based on the multibody model. Journal of Mechanical Engineering, 2004, 40(1):104-108 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200401020.htm
    [4]
    刘颖, 王瑞.基于计算多体系统动力学的机织卡尔丹角多体动力学模型.机械工程学报, 2014, 50(5):102-107 http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201405016.htm

    Liu Ying, Wang Rui. A cardan angular model of rigid bodies for woven fabrics based on the dynamics of multibody systems. Journal of Mechanical Engineering, 2014, 50(5):102-107 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201405016.htm
    [5]
    谭蔚, 贾占斌, 聂清德.弹簧阻尼器在塔器防振中的应用.化学工程, 2013, 41(12):16-19, 34 http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY201312006.htm

    Tan Wei, Jia Zhanbin, Nie Qingde. Application of spring damper in antivibration of columns. Chemical Engineering, 2013, 41(12):16-19, 34 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-IMIY201312006.htm
    [6]
    王庚祥, 刘宏昭.多体系统动力学中关节效应模型的研究进展.力学学报, 2015, 47(1):31-50 doi: 10.6052/0459-1879-14-091

    Wang Gengxiang, Liu Hongzhao. Research progress of joint effects model in multibody system dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1):31-50 (in Chinese) doi: 10.6052/0459-1879-14-091
    [7]
    王国平.多体系统动力学数值解法.计算机仿真, 2006, 23(12):86-89 doi: 10.3969/j.issn.1006-9348.2006.12.023

    Wang Guoping. Numerical algorithms of multibody system dynamics. Computer Simulation, 2006, 23(12):86-89 (in Chinese) doi: 10.3969/j.issn.1006-9348.2006.12.023
    [8]
    Newmark N. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division, 1959, 85:67-94 http://ci.nii.ac.jp/naid/10021063770/
    [9]
    Negrut D, Rampalli R, Ottarsson G, et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. Journal of Computational and Nonlinear Dynamics, 2007, 2(1):73-85 doi: 10.1115/1.2389231
    [10]
    马秀腾, 翟彦博, 谢守勇.多体系统指标2运动方程HHT方法违约校正.力学学报, 2017, 49(1):175-181 http://lxxb.cstam.org.cn/CN/abstract/abstract146230.shtml

    Ma Xiuteng, Zhai Yanbo, Xie Shouyong. HHT method with constraints violation correction in the index 2 equations of motion for multibody system. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):175-181 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract146230.shtml
    [11]
    Chun J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-α method. ASME Journal of Applied Mechanics, 1993, 60(2):371-375 doi: 10.1115/1.2900803
    [12]
    Bathe KJ, Baig MMI. On a composite implicit time integration procedure for nonlinear dynamics. Computers and Structures, 2005, 83(31-32):2513-2524 doi: 10.1016/j.compstruc.2005.08.001
    [13]
    Bathe KJ. Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme. Computers and Structures, 2007, 85(7-8):437-445 doi: 10.1016/j.compstruc.2006.09.004
    [14]
    钟万勰, 高强.约束动力系统的分析结构力学积分.动力学与控制, 2006, 4(3):193-200 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200603001.htm

    Zhong Wanxie, Gao Qiang. Integration of constrained dynamical system via analytical structural mechanics. Journal of Dynamics and Control, 2006, 4(3):193-200 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200603001.htm
    [15]
    吴锋, 高强, 钟万勰.基于祖冲之类方法的多体动力学方程保能量保约束积分.计算机辅助工程, 2014, 23(1):64-68 http://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201401014.htm

    Wu Feng, Gao Qiang, Zhong Wanxie. Energy and constraint preservation integration for multibody equations based on Zu Chongzhi method. Computer Aided Engineering, 2014, 23(1):64-68 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201401014.htm
    [16]
    Shabana AA. Dynamics of Multibody Systems (3rd edition). New York:Cambridge University Press, 2005
    [17]
    Bayo E, García de Jaló J. Kinematics and Dynamics Simulation of Multibody System, the Real-time Challenge. New York:Springer, 1994
    [18]
    张雄, 王天舒.计算动力学.北京:清华大学出版社, 2007

    Zhang Xiong, Wang Tianshu. Computational Dynamics. Beijing:Tsinghua University Press, 2007 (in Chinese)
    [19]
    刘延柱, 潘振宽, 戈新生.多体系统动力学(第2版).北京:高等教育出版社, 2014

    Liu Yanzhu, Pan Zhenkuan, Ge Xinsheng. Dynamics of Multibody Systems (2nd edition). Beijing:Higher Education Press, 2014 (in Chinese)
    [20]
    Hussein BA, Shabana AA. Sparse matrix implicit numerical integration of the stiff differential/algebraic equations:implementation. Nonlinear Dynamics, 2011, 65:369-382 doi: 10.1007/s11071-010-9898-9
    [21]
    田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. [博士论文]. 武汉: 华中科技大学, 2009

    Tian Qiang. Research and application of flexible multibody system dynamics based on the absolute nodal coordinate method.[PhD Thesis]. Wuhan:Huazhong University of Science and Technology, 2009 (in Chinese)
    [22]
    Bottasso CL, Dopico D, Trainelli L. On the optimal scaling of index three DAEs in multibody dynamics. Multibody System Dynamics, 2007, 19:3-20 doi: 10.1007/s11044-007-9051-9
    [23]
    Motro R. Tensegrity systems:the state of the art. International Journal of Space Structures, 1992, 7:75-82 doi: 10.1177/026635119200700201
    [24]
    Skelton R, de Oliveka M. Tensegrity Systems. New York:Springer, 2009
    [25]
    Pagitz M, Mirats Tur JM. Finite element based form-finding algorithm for tensegrity structures. International Journal of Solids and Structures, 2009, 46:3235-3240 doi: 10.1016/j.ijsolstr.2009.04.018
    [26]
    Gasparini D, Klinka KK, Arcaro VF. A finite element for formfinding and static analysis of tensegrity structures. Journal of Mechanics of Materials & Structures, 2011, 6(9-10):1239-1254
    [27]
    Koohestani K. Form-finding of tensegrity structures via genetic algorithm. International Journal of Solids and Structures, 2012, 49:739-747 doi: 10.1016/j.ijsolstr.2011.11.015
    [28]
    Tran HC, Lee J. Form-finding of tensegrity structures using double singular value decomposition. Engineering with Computers, 2013, 29:71-86 doi: 10.1007/s00366-011-0245-7
    [29]
    Koohestani K, Guest S. A new approach to the analytical and numerical form finding of tensegrity structures. International Journal of Solids and Structures, 2013, 50 (19):2995-3007 doi: 10.1016/j.ijsolstr.2013.05.014
    [30]
    Zhang LY, Li Y, Cao YP, et al. Stiffness matrix based form-finding method of tensegrity structures. Engineering Structures, 2014, 58:36-48 doi: 10.1016/j.engstruct.2013.10.014
    [31]
    Massimo C, Josep M, Mirats T. A comprehensive dynamic model for class-1 tensegrity systems based on quaternions. International Journal of Solids and Structures, 2011, 48:785-802 doi: 10.1016/j.ijsolstr.2010.11.015
    [32]
    Barnes MR. Form finding and analysis of tension structures by dynamic relaxation. International Journal of Space Structures, 1999, 14(2):89-104 doi: 10.1260/0266351991494722
    [33]
    Ali NBH, Rhode-Barbarigos L, Smith IFC. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. International Journal of Solids and Structures, 2011, 48(5):637-647 doi: 10.1016/j.ijsolstr.2010.10.029
  • Related Articles

    [1]Chen Zhankui, Luo Kai, Tian Qiang. DYNAMIC EQUIVALENT MODELING OF TENSEGRITY STRUCTURES AND EXPERIMENTAL VERIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1698-1711. DOI: 10.6052/0459-1879-21-056
    [2]Zhu Shixin, Zhang Liyuan, Li Songxue, Zhang Boyang, Zhang Qingdong. NUMBER-SHAPED TENSEGRITY STRUCTURES: CONFIGURATION DESIGN AND MECHANICAL PROPERTIES ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 798-809. DOI: 10.6052/0459-1879-18-043
    [3]Dajiang Geng, Peijun Guo, Shunhua Zhou. Implicit numerical integration of an elasto-plastic constitutive model for structured clays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 78-86. DOI: 10.6052/0459-1879-16-340
    [4]Liu Fei, Hu Quan, Zhang Jingrui. CONSTRAINT FORCE ALGORITHM FOR TREE-LIKE MULITBODY SYSTEM DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 201-212. DOI: 10.6052/0459-1879-15-201
    [5]Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
    [6]Qi Zhaohui, Wang Gang, Li Tan. CONTACT ANALYSIS OF DEEP GROOVE BALL BEARING JOINT IN MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 426-433. DOI: 10.6052/0459-1879-12-320
    [7]Zhao Kuan, Chen Jianjun, Yan Bin, Ma Hongbo. DYNAMIC ANALYSIS OF MULTIBODY SYSTEMS WITH PROBABILISTIC PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 802-806. DOI: 10.6052/0459-1879-11-342
    [8]Liu Wei, Zhang Laiping, He Xin, He Lixin, Zhang Hanxin. AN IMPLICIT ALGORITHM FOR DISCONTINUOUS GALERKIN METHOD BASED ON NEWTON/GAUSS-SEIDEL ITERATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 792-796. DOI: 10.6052/0459-1879-11-352
    [9]Qi Wang, . IMPLICIT NUMERICAL ALGORITHM FOR MULTIBODY DYNAMICS WITH OPEN LOOP SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 717-725. DOI: 10.6052/0459-1879-1996-6-1995-391
    [10]A STUDY ON THE COMPUTATION EFFICIENCY OF MARCHING/ITERATING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 503-507. DOI: 10.6052/0459-1879-1994-4-1995-574
  • Cited by

    Periodical cited type(2)

    1. 杨敏勃,杨磊,康昌玺,王瑞琦. 一种主动阻尼式燃气作动器的设计及实验验证. 液压与气动. 2021(02): 177-184 .
    2. 薛胜利. 基于数值分析的微分代数方程构建. 智库时代. 2018(28): 275+288 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1818) PDF downloads (1230) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return