EI、Scopus 收录
中文核心期刊
Zhao Guoqi, Qiu Yaping, Luo Ying, Feng Kan. DAMAGE DETECTION OF MESO-SCALE CONCRETE STRUCTURES BASED ON TIME REVERSAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 953-960. DOI: 10.6052/0459-1879-17-007
Citation: Zhao Guoqi, Qiu Yaping, Luo Ying, Feng Kan. DAMAGE DETECTION OF MESO-SCALE CONCRETE STRUCTURES BASED ON TIME REVERSAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 953-960. DOI: 10.6052/0459-1879-17-007

DAMAGE DETECTION OF MESO-SCALE CONCRETE STRUCTURES BASED ON TIME REVERSAL METHOD

  • Received Date: January 03, 2017
  • Available Online: March 23, 2017
  • A specific time reversal imaging method is proposed in this article to detect defects in concrete structures. In order to detect the damage that the scale is the same as the aggregate, a meso-scale concrete model is introduced in this article. As the concrete is a composite material composed by cement, aggregate, water and concrete admixtures, the Monte Carlo random model and the aggregate grading curve of real concrete samples are introduced for designing this finite element model. Then, the damaged model was analyzed by employing a self-adapted time reversed model to achieve the ultrasonic wave field simulation. This imaging method contains two steps:the first is the forward detection. A series of reflected echo signals with damage information are obtained in this section. These received signals can be reversed in Matlab to serve as the incident signals in the next Time Reversal process; the second step is to image the damage location via interfering the wave-fronts actuated by different transducers to illustrate the peaks of waveform amplitudes. By determining the interfering wave peak time, obtaining the original wave field of that moment, we can forming the wavelet transform energy field, and then complete the damage imaging of the concrete model with defect. In the time reversal process, we introduced the equivalent elastic parameters as the same geometric dimension of the original mesosacle concrete model to locate the damage effectively. Compared with the original wave field, the energy field modified by wavelet transform can lower the effect of the environmental noise. Finally, we discussed the equivalent elastic parameters and the damage sizes to verify the robustness of this method which is applicable in monitoring and evaluating the damage in concrete structures.
  • [1]
    万征, 姚仰平, 孟达.复杂加载下混凝土的弹塑性本构模型.力学学报, 2016, 48(5):1159-1171 http://lxxb.cstam.org.cn/CN/abstract/abstract146013.shtml

    Wan Zheng, Yao Yangping, Meng Da. An elastoplastic constitutive model of concrete under complicated load. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5):1159-1171 http://lxxb.cstam.org.cn/CN/abstract/abstract146013.shtml
    [2]
    Wittmann FH, Roelfstra PE. Simulation and analysis of composite structures. Materials Science and Engineering, 1984, 68(2):239-248 https://www.researchgate.net/publication/248373289_Simulation_and_analysis_of_composite_structures
    [3]
    Schlangen E, Van Mier JGM. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Materials and Structures, 1992, 25(9):534-542 doi: 10.1007/BF02472449
    [4]
    Wriggers P, Moftah SÖ. Mesoscale models for concrete:homogenization and damage behaviour. Finite Elements in Analysis and Design, 2006, 42(7):623-636 doi: 10.1016/j.finel.2005.11.008
    [5]
    Leite JPB, Slowik V, Apel J. Computational model of mesoscopic structure of concrete for simulation of fracture processes. Comput-ers and Structures, 2007, 85(17/18):1293-1303 https://www.researchgate.net/publication/229259856_Computational_model_of_mesoscopic_structure_of_concrete_for_simulation_of_fracture_processes
    [6]
    Wang ZM, Kwan AKH, Chan HC. Mesoscopic study of concrete Ⅰ:generation of random aggregate structure and finite element mesh. Computers & Structures, 1999, 70(5):533-544 https://www.researchgate.net/publication/229358584_Mesoscopic_study_of_concrete_I_Generation_of_random_aggregate_structure_and_finite_element_mesh
    [7]
    马怀发, 陈厚群, 黎保琨.混凝土试件细观结构的数值模拟.水利学报, 2004, 35(10):27-35 doi: 10.3321/j.issn:0559-9350.2004.10.005
    [8]
    杨华, 李宗利, 惠弘毅.基于随机骨料模型的混凝土弹性模量预测研究.长江科学院院报, 2016, 33(2):100-105 doi: 10.11988/ckyyb.20140583

    Yang Hua, Li Zongli, Hui Hongyi. Prediction of elastic modulus of concrete based on random aggregate model. Journal of Yangtze River Scientific Research Institute, 2016, 33(2):100-105 doi: 10.11988/ckyyb.20140583
    [9]
    Leslie JR, Cheesman WJ. An ultrasonic method of studying deterioration and cracking in concrete structures. Journal of the American Concrete Institute, 1949, 21(1):17-36 https://www.researchgate.net/publication/273165862_Assessing_frost_resistance_of_concrete_by_impact-echo_method
    [10]
    Clayton D, Barker A, Albright A, et al. Improved synthetic aperture focusing technique results of thick concrete specimens through frequency banding//Chimenti DE, Bond LJ. AIP Conference Proceedings. AIP Publishing, 2016, 1706(1):020012
    [11]
    Fendt KT, Mooshofer H, Rupitsch SJ, et al. Ultrasonic defect characterization in heavy rotor forgings by means of the synthetic aperture focusing technique and optimization methods. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(6):874-885 doi: 10.1109/TUFFC.2016.2557281
    [12]
    Beniwal S, Ghosh D, Ganguli A. Ultrasonic imaging of concrete using scattered elastic wave modes. NDT & E International, 2016, 82(1):26-35 doi: 10.1137/S0036144500368859
    [13]
    Liu Z, Sun K, Song G, et al. Damage localization in aluminum plate with compact rectangular phased piezoelectric transducer array. Mechanical Systems and Signal Processing, 2016, 70(1):625-636 https://www.researchgate.net/publication/282890751_Damage_localization_in_aluminum_plate_with_compact_rectangular_phased_piezoelectric_transducer_array
    [14]
    Vassholz M, Koberstein-Schwarz B, Ruhlandt A, et al. New X-ray tomography method based on the 3d Radon transform compatible with anisotropic sources. Physical Review Letters, 2016, 116(8):088101-1 doi: 10.1103/PhysRevLett.116.088101
    [15]
    李飞, 余西龙, 林鑫.基于TDLAS的层析成像技术TDLAT.力学学报, 2014, 46(1):55-59 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201401007.htm

    Li Fei, Yu Xilong, Lin Xin. Parallel-beam tomography based on TDLAS. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):55-59 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201401007.htm
    [16]
    邱雷, 袁慎芳, 苏永振.基于Shannon复数小波和时间反转聚焦的复合材料结构多源冲击成像定位方法.航空学报, 2010, 31(12):2417-2424 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201012019.htm

    Qiu Lei, Yuan Shenfang. Multiple impact source imaging and localization on composite structure based on shannon complex wavelet and time reversal focusing. Acta Aeronautica Et Astronautica Sinica, 2010, 31(12):2417-2424 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201012019.htm
    [17]
    王强, 袁慎芳.主动Lamb波结构健康监测中信号增强与损伤成像方法.航空学报, 2008, 29(4):1061-1067 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200804049.htm

    Wang Qiang, Yuan Shenfang. Amplifying signal and imaging damage method for active lamb-wave structure health monitoring. Acta Aeronautica Et Astronautica Sinica, 2008, 29(4):1061-1067 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200804049.htm
    [18]
    王强, 袁慎芳.无参考主动Lamb波结构损伤时反成像监测方法.航空学报, 2010, 31(1):178-183 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001028.htm

    Wang Qiang, Yuan Shenfang. No baseline time reversal imaging method for active lamb wave structural damage monitoring. Acta Aeronautica Et Astronautica Sinica, 2010, 31(1):178-183 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001028.htm
    [19]
    Zhu R, Huang GL, Yuan FG. Fast damage imaging using the timereversal technique in the frequency-wavenumber domain. Smart Materials and Structures, 2013, 22(7):075028 doi: 10.1088/0964-1726/22/7/075028
    [20]
    He J, Harb MS, Yuan FG. Non-contact ultrasonic technique for Lamb wave characterization in composite plates. Ultrasonics, 2016, 64(1):162-169 https://www.researchgate.net/publication/282044840_Non-contact_Ultrasonic_Technique_for_Lamb_Wave_Characterization_in_Composite_Plates
    [21]
    Chen C, Yuan FG. Impact source identification in finite isotropic plates using a time-reversal method:theoretical study. Smart Materials and Structures, 2010, 19(10):105028 doi: 10.1088/0964-1726/19/10/105028
    [22]
    Fink M, Cassereau D, Derode A, et al. Time-reversed acoustics. Reports on Progress in Physics, 2000, 63(12):1933 doi: 10.1088/0034-4885/63/12/202
    [23]
    Saenger EH. Time reverse characterization of sources in heterogeneous media. NDT & E International, 2011, 44(8):751-759
    [24]
    Kocur GK, Saenger EH. Deconvolution of acoustic emissions for source localization using time reverse modeling. Journal of Sound and Vibration, 2017, 387(1):66-78 http://adsabs.harvard.edu/abs/2017JSV...387...66K
    [25]
    Saenger EH, Kocur GK, Jud R, et al. Application of time reverse modeling on ultrasonic non-destructive testing of concrete. Applied Mathematical Modelling, 2011, 35(2):807-816 doi: 10.1016/j.apm.2010.07.035
    [26]
    Saenger EH. Numerical methods to determine effective elastic properties. International Journal of Engineering Science, 2008, 46(6):598-605 doi: 10.1016/j.ijengsci.2008.01.005
    [27]
    Saenger EH, Shapiro SA. Effective velocities in fractured media:a numerical study using the rotated staggered finite-difference grid. Geophysical Prospecting, 2002, 50(2):183-194 doi: 10.1046/j.1365-2478.2002.00309.x
    [28]
    Steiner B, Saenger EH, Schmalholz SM. Time reverse modeling of low-frequency microtremors:application to hydrocarbon reservoir localization. Geophysical Research Letters, 2008, 35(3):L03307 https://www.researchgate.net/publication/255594696_Time_reverse_modeling_of_low-frequency_microtremors_Application_to_hydrocarbon_reservoir_localization
    [29]
    Kocur GK, Saenger EH, Grosse CU, et al. Time reverse modeling of acoustic emissions in a reinforced concrete beam. Ultrasonics, 2016, 65(1):96-104 doi: 10.1007%2FBF02325153.pdf
    [30]
    蔡伟, 陈文.复杂介质中任意阶频率依赖耗散声波的分数阶导数模型.力学学报, 2016, 48(6):1265-1280 http://lxxb.cstam.org.cn/CN/abstract/abstract146097.shtml

    Cai Wei, Chen Wen. Fractuional derivative modeling of frequency-dependent dissipative mechanism forwave propagation in complex media. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6):1265-1280 http://lxxb.cstam.org.cn/CN/abstract/abstract146097.shtml
    [31]
    唐春安, 朱万成.混凝土损伤与断裂一数值试验.北京:科学出版社, 2003

    Tang Chunan, Zhu Wancheng. A Numerical Experiment of Concrete Damage and Fracture. Beijing:Science Press, 2003
    [32]
    Doucet A, Freitas DN, Gordon N. An introduction to sequential Monte Carlo methods. Statistics for Engineering & Information Science, 2001, 18(1):3-14 doi: 10.1007%2F978-1-4757-3437-9_1.pdf
    [33]
    Walraven JC, Reinhardt HW. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. HERÖN, 1981, 26(1A):1-68 https://repository.tudelft.nl/resolve_uuids.php/uuid:3d68bd1a-465d-4590-b33c-7ede99bbc251
    [34]
    Liu Y, Li Z, Zhang W. Crack detection of fibre reinforced composite beams based on continuous wavelet transform. Nondestructive Testing & Evaluation, 2010, 25(25):25-44 doi: 10.1080/10589750902744992?scroll=top&needAccess=true
  • Related Articles

    [1]Lian Huan, Gao Qi. Preface of theme articles on applications of laser and imaging techniques to fluid mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 315-315. DOI: 10.6052/0459-1879-25-069
    [2]Zhao Xiang, Li Siyi, Li Yinghui. THE RESEARCH ON DAMAGE DETECTION OF CURVED BEAM BASED ON PIEZOELECTRIC VIBRATION ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044. DOI: 10.6052/0459-1879-21-452
    [3]Ren Yudong, Chen Jianbing. SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1196-1121. DOI: 10.6052/0459-1879-20-427
    [4]Du Chengbin, Jin Licheng, Wu Zhiqin. DAMAGE INDEX METHOD FOR DETECTION OF FLAWS BASED ON DYNAMIC RESPONSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1841-1855. DOI: 10.6052/0459-1879-19-221
    [5]Tang Wenzhi, Xiao Hanbin, Zou Sheng. APPLICATION OF DISCONTINUOUS DIGITAL IMAGE CORRELATION IN CRACK RECONSTRUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1101-1109. DOI: 10.6052/0459-1879-19-098
    [6]Li Jie Ren Xiaodan Huang Qiaoping. A viscoplastic damage constitutive model for concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 193-201. DOI: 10.6052/0459-1879-2011-1-lxxb2009-646
    [7]Gang Yan, Li Zhou. A simulation study on migration technique for damage imaging based on mindlin plate theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 499-505. DOI: 10.6052/0459-1879-2010-3-2008-210
    [8]MULTI POSITION TRANSVERSE IMPACT DAMAGE DETERMINATION WITHIN COMPOSITE LAMINATES BY FIBRE OPTIC IMAGE RECONSTRUCTIONS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 339-346. DOI: 10.6052/0459-1879-1999-3-1995-039
    [9]PRELIMINARY INVESTIGATION OF PARTICLE IMAGE VELOCIMETRY (PTV-PIV) TECHNIQUE IN TWO-PHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 121-125. DOI: 10.6052/0459-1879-1998-1-1995-107
    [10]THE UNIFICATION OF DAMAGE WITH FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 123-128. DOI: 10.6052/0459-1879-1991-1-1995-818

Catalog

    Article Metrics

    Article views (1195) PDF downloads (842) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return