EI、Scopus 收录
中文核心期刊
Gu Mengmeng, Wei Gang, Deng Bing, Du Hui, Wu Junlin. EXPERIMENTAL INVESTIGATION ON THE EVOLUTION OF INTERNAL SOLITARY WAVE OVER A RIDGE AND ITS ACTING FORCES ON A SUBMERGED SLENDER BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1260-1271. DOI: 10.6052/0459-1879-16-322
Citation: Gu Mengmeng, Wei Gang, Deng Bing, Du Hui, Wu Junlin. EXPERIMENTAL INVESTIGATION ON THE EVOLUTION OF INTERNAL SOLITARY WAVE OVER A RIDGE AND ITS ACTING FORCES ON A SUBMERGED SLENDER BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1260-1271. DOI: 10.6052/0459-1879-16-322

EXPERIMENTAL INVESTIGATION ON THE EVOLUTION OF INTERNAL SOLITARY WAVE OVER A RIDGE AND ITS ACTING FORCES ON A SUBMERGED SLENDER BODY

  • Received Date: November 07, 2016
  • Available Online: September 02, 2017
  • The configuration of internal solitary wave (ISW) over a ridge terrain will largely increase the uncertain factors threatening the safety for marine architecture and submerged vehicle. Laboratory experiments are conducted to examine an ISW propagating over a ridge terrain and its interaction with a submerged slender body in a large-type gravity stratified fluid tank. The evolution characteristics of the ISW is measured by using multi-channel conductivity-probe arrays and dyeing identification method, and its action on the body exerted by the ISW is measured by a set of three-component force sensor. The experimental results have shown that when an ISW of depress propagates over a ridge terrain its wave configuration will be changed significantly, including that its amplitude will increase on the windward side of ridge, its lee side will be up at the top of ridge and its wavelength will be longer on the leeward side of ridge. Furthermore the configuration change of the ISW will affect obviously the characteristics of the action on a slender body, including that the downward force becomes larger distinctly on the windward side of ridge, the upward force is more significant at the top of ridge and the effective time of the action on the body becomes longer at the leeward side of ridge. Therefore, the body movement trend can be judged roughly based on the force behaviors, i.e. the largest sinking will happen on the windward side of ridge and the stronger surging towards the direction of ridge will do on the windward side of ridge.
  • [1]
    方欣华, 杜涛.海洋内波基础和中国海内波.青岛:中国海洋大学出版社, 2005.

    Fang Xinhua, Du Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas. Qingdao:Ocean University of China Press, 2005(in Chinese)
    [2]
    冯文科, 鲍才旺.南海地形地貌特征.海洋地质研究, 1982, 2(4):80-93

    Feng Wenke, Bao Caiwang. Topographic and geomorphological characteristics of South China Sea. Marine Geological Research, 1982, 2(4):80-93 (in Chinese)
    [3]
    Yang YJ, Tang TY, Chang MH, et al. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 2004, 29(4):1182-1199 doi: 10.1109/JOE.2004.841424
    [4]
    Wang J, Sun ML, Zhang XD, et al. A numerical study of the generation mechanism of internal solitary waves in the Luzon Strait. Acta Oceanologica Sinica, 2015, 34(7):38-43 doi: 10.1007/s13131-015-0695-7
    [5]
    蔡树群, 何建玲, 谢皆烁.近10年来南海内孤立波的研究进展.地球科学进展, 2011, 26(7):703-710

    Cai Shuqun, He Jianling, Xie Jieshuo. Recent decadal progress of the study on internal solitons in the south china sea. Advances in Earth Science, 2011, 26(7):703-710 (in Chinese)
    [6]
    黄文昊, 林忠义, 尤云祥.内孤立波作用下Spar平台动力响应特性.海洋工程, 2015, 33(2):21-31 http://d.wanfangdata.com.cn/Periodical/hygc201502003

    Huang Wenhao, Lin Zhongyi, You Yunxiang. Dynamic response characteristics of a spar platform under internal solitary waves. Ocean Engineering, 2015, 33(2):21-31(in Chinese) http://d.wanfangdata.com.cn/Periodical/hygc201502003
    [7]
    Wang Y, Wang LL, Zhu H, et al. A numerical study of the forces on two tandem cylinders exerted by internal solitary waves. Mathematical Problems in Engineering, 2016, 1:1-15 http://www.hindawi.com/journals/mpe/2016/9086246/cta/
    [8]
    Hsieh CM, Cheng MH, Hwang RR, et al. Numerical study on evolution of an internal solitary wave across anidealized shelf with different front slopes. Applied Ocean Research, 2016, 59:236-253 doi: 10.1016/j.apor.2016.06.006
    [9]
    黄鹏起, 陈旭, 孟静等.内孤立波破碎所致混合的实验研究.海洋与湖沼, 2016, 47(3):533-539 http://d.wanfangdata.com.cn/Periodical/hyyhz201603006

    Huang Pengqi, Chen Xu, Meng Jing, et al. An experimental study on mixing induced by internal solitary wave breaking. Oceanologia Et Limnologia Sinica, 2016, 47(3):533-539 (in Chinese) http://d.wanfangdata.com.cn/Periodical/hyyhz201603006
    [10]
    Li Q, Xu ZH, Yin BS, et al. Modeling the interaction of an internal solitary wave with a sill. Acta Oceanologica Sinica, 2015, 34(11):32-37 doi: 10.1007/s13131-015-0745-1
    [11]
    Hsieh CM, Hwangb RR, Hsu JRC, et al. Numerical modeling of flow evolution for an internal solitary wave propagating over a submerged ridge. Wave Motion, 2015, 55:48-72 doi: 10.1016/j.wavemoti.2014.12.008
    [12]
    尤云祥, 徐杰, 魏岗等.连续分层流体中垂直薄板的水动力特性.力学学报, 2007, 39(3):297-310 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract141437.shtml

    You Yunxiang, Xu Jie, Wei Gang, et al. Hydrodynamic characteristics of vertical thin barrier in a continuously stratified fluid. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3):297-310 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract141437.shtml
    [13]
    魏岗, 尤云祥, 缪国平等.分层流体中内孤立波在台阶上的反射和透射.力学学报, 2007, 39(1):45-53 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract141455.shtml

    Wei Gang, You Yunxiang, Miao Guoping, et al. Reflection and transmission of an internal solitary wave over a step in stratified fluid. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1):45-53 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract141455.shtml
    [14]
    屈子云, 魏岗, 杜辉等.下凹型内孤立波沿台阶地形演化特征试验.河海大学学报(自然科学版), 2015, 43(1):85-89 http://d.wanfangdata.com.cn/Periodical/hhdxxb201501016

    Qu Ziyun, Wei Gang, Du Hui, et al. Experimental on the evolution characteristics of internal solitary wave of depression over step topography. Journal of Hohai University (Natural Sciences), 2015, 43(1):85-89 (in Chinese) http://d.wanfangdata.com.cn/Periodical/hhdxxb201501016
    [15]
    Lee MP. Numerical simulation of nonlinear internal solitary wave interactions with submarine topographic features.[PhD Thesis]. Washington:The Catholic University of America, 2011
    [16]
    杜辉, 魏岗, 曾文华等.缓坡地形上内孤立波的破碎及能量分析.海洋科学, 2014, 38(10):98-104 doi: 10.11759/hykx20130124002

    Du Hui, Wei Gang, Zeng Wenhua, et al. Breaking and energy analysis of internal solitary wave over a gentle slope. Marine Sciences, 2014, 38(10):98-104 (in Chinese) doi: 10.11759/hykx20130124002
    [17]
    Michallet H., Ivey GN. Experiments on mixing due to internal solitary waves breaking on uniform slopes. Journal of Geophysical Research, 1999, 104(C6):13467-13477 doi: 10.1029/1999JC900037
    [18]
    Chen CY. An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography. Ocean Engineering. 2007, 34:1995-2008 doi: 10.1016/j.oceaneng.2007.02.014
    [19]
    Xie JS, Cai SQ, He YH. A continuously stratified nonlinear model for internal solitary waves in the northern South China Sea. Chinese Journal of Oceanology and Limnology, 2010, 28(5):1040-1048 doi: 10.1007/s00343-010-9077-3
    [20]
    Zhu H, Wang LL, Avital EJ, et al. Numerical simulation of interaction between internal solitary waves and submerged ridges. Applied Ocean Research, 2016, 58:118-134 doi: 10.1016/j.apor.2016.03.017
    [21]
    高国兴, 刘翠华, 祝传刚等.单一海脊地形对海洋内波生成与传播影响的分析.热带海洋学报, 2015, 34(3):23-29 doi: 10.11978/j.issn.1009-5470.2015.03.003

    Gao Guoxing, Liu Cuihua, Zhu Chuangang, et al. Analysis of single-ridge topography impact on internal waves' generation and propagation. Journal of Tropical Oceanography, 2015, 34(3):23-29 (in Chinese) doi: 10.11978/j.issn.1009-5470.2015.03.003
    [22]
    黄文昊, 尤云祥, 王旭等.圆柱型结构内孤立波载荷实验及其理论模型.力学学报, 2013, 45(5):1-13 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract144345.shtml

    Huang Wenhao, You Yunxiang, Wang Xu, et al. Internal solitary wave loads experiments and its theoretical model for a cylindrical structure. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):1-13 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract144345.shtml
    [23]
    Song ZJ, Teng B, Gou Y, et al. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Research, 2011, 33(2):120-129 doi: 10.1016/j.apor.2011.01.003
    [24]
    Si ZS, Zhang YL, Fan ZS. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea. Applied Ocean Research, 2012, 37(37):127-132 https://www.sciencedirect.com/science/article/pii/S0141118712000387
    [25]
    张新曙, 胡晓峰, 尤云祥等.深海多立柱浮式平台涡激运动特性研究.力学学报, 2016, 48(3):593-598 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract145766.shtml

    Zhang Xinshu, Hu Xiaofeng, You Yunxiang, et al. Investigation on the characterisitics of vortex induced motion of a deep sea muti-column floating platform. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):593-598 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract145766.shtml
    [26]
    关晖, 魏岗, 杜辉.内孤立波与潜艇相互作用的水动力学特性.解放军理工大学学报(自然科学版), 2012, 13(5):577-582 http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201205020

    Guan Hui, Wei Gang, Du Hui. Hydrodynamic properties of interactions of three-dimensional internal solitary waves with submarine. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(5):577-582 (in Chinese) http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201205020
    [27]
    付东明, 尤云祥, 李巍.两层流体中内孤立波与潜体相互作用数值模拟.海洋工程, 2009, 27(3):38-44 http://d.wanfangdata.com.cn/Periodical/hygc200903006

    Fu Dongming, You Yunxiang, Li Wei. Numerical simulation of internal solitary waveswith a submerged body in a two-layer fluid. Ocean Engineering, 2009, 27(3):38-44 (in Chinese) http://d.wanfangdata.com.cn/Periodical/hygc200903006
    [28]
    Wei G, Du H, Xu XH, et al. Experimental investigation of the generation of large-amplitude internal solitary wave and its interaction with a submerged slender body. Science China:Physics, Mechanics & Astronomy, 2014, 57(2):301-310
    [29]
    Du H, Wei G, Gu MM, et al. Experimental investigation of the load exerted by nonstationary internal solitary waves on a submerged slender body over a slope. Applied Ocean Research, 2016, 59:216-223 doi: 10.1016/j.apor.2016.05.003
    [30]
    Whitham GB. Linear and Nonlinear Waves. Hobo Ken:John Wiley and Sons. Inc. 1974
  • Related Articles

    [1]Shi Weilong, Gan Caijun, Zhang Junyan, Li Xiaohui, Wang Li, Cheng Xiaoli, He Shipei. EXPERIMENTAL STUDY ON LAYERED CHARACTERISTICS OF FLOW FIELD AROUND HYPERSONIC SLENDER BODY IN NEAR SPACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 929-936. DOI: 10.6052/0459-1879-24-276
    [2]Wang Chao, Du Wei, Du Peng, Li Zhuoyue, Zhao Sen, Hu Haibao, Chen Xiaopeng, Huang Xiao. INFLUENCE OF DIVING DEPTH ON MOTION RESPONSE AND LOAD CHARACTERISTICS OF SUBMERGED BODY UNDER ACTION OF INTERNAL SOLITARY WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1921-1933. DOI: 10.6052/0459-1879-21-649
    [3]Wang Yunpeng, Yang Ruixin, Nie Shaojun, Jiang Zonglin. DEEP-LEARNING-BASED INTELLIGENT FORCE MEASUREMENT SYSTEM USING IN A SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1304-1313. DOI: 10.6052/0459-1879-20-190
    [4]Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
    [5]Meng Xuhui, Wang Liang, Guo Zhaoli. FORCE EVALUATION USING MOMENTUM-EXCHANGEMETHOD IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 525-532. DOI: 10.6052/0459-1879-13-359
    [6]Zhai Jian, Zhang Weiwei, Gao Chuanqiang, Zhang Yanhua, Ye Zhengyin. SIDE FORCE CONTROL ON SLENDER BODY BY VORTEX GENERATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 308-312. DOI: 10.6052/0459-1879-13-232
    [7]Yankui Wang, Yongsheng Zhang, Xueying Deng, Shuifeng Yang, Xiaowei Yu. Effect of vectoring jet on asymmetrical vortex of slender body[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 289-296. DOI: 10.6052/0459-1879-2007-3-2006-140
    [8]Dawei Chen, Xiaoliang Ma, Guowei Yang. Numerical simulation of windward vortex shocks about supersonic slender[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 721-732. DOI: 10.6052/0459-1879-2006-6-2005-251
    [9]THE INVESTIGAION OF ASYMMETRIC SEPARAION ON SLENDER BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 114-119. DOI: 10.6052/0459-1879-1995-S-1995-512
    [10]Jiachun Li. FORCES EXERTED BY NONLINEAR PERIODIC AND BREAKING WAVES ON PILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 491-196. DOI: 10.6052/0459-1879-1991-4-1995-867
  • Cited by

    Periodical cited type(5)

    1. 杜鹏,孙平宇,张淼,张庆辉,孙孟舸,胡海豹,陈效鹏. 内孤立波及其与海洋结构物相互作用研究进展. 中国舰船研究. 2025(02): 151-165 .
    2. 赵洁,查国震,宋新改,宋新新,彭红春. 下凹和上凸型海洋内孤立波对遥控潜航器的作用力研究. 海洋科学进展. 2024(02): 412-424 .
    3. 汪超,杜伟,杜鹏,李卓越,赵森,胡海豹,陈效鹏,黄潇. 内孤立波作用下潜深对潜体运动响应和载荷特性的影响研究. 力学学报. 2022(07): 1921-1933 . 本站查看
    4. 李景远,张庆河,陈同庆. 密度连续变化水体内孤立波数值模拟研究. 天津大学学报(自然科学与工程技术版). 2021(02): 161-170 .
    5. 韩鹏,钱洪宝,李宇航,揭晓蒙. 内波的生成、传播、遥感观测及其与海洋结构物相互作用研究进展. 海洋工程. 2020(04): 148-158 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1210) PDF downloads (235) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return