EI、Scopus 收录
中文核心期刊
Su Xianglong, Xu Wenxiang, Chen Wen. NUMERICAL STUDY FOR LAMINAR FLOW OF NON-NEWTONIAN FLUID BASED ON FRACTAL DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1020-1028. DOI: 10.6052/0459-1879-16-318
Citation: Su Xianglong, Xu Wenxiang, Chen Wen. NUMERICAL STUDY FOR LAMINAR FLOW OF NON-NEWTONIAN FLUID BASED ON FRACTAL DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1020-1028. DOI: 10.6052/0459-1879-16-318

NUMERICAL STUDY FOR LAMINAR FLOW OF NON-NEWTONIAN FLUID BASED ON FRACTAL DERIVATIVE

  • Received Date: November 06, 2016
  • Available Online: July 18, 2017
  • Non-Newtonian fluid has complex rheological characteristics.It is very helpful to reveal these characteristics for the applications of non-Newtonian fluid in industry and agriculture.The classical rheological models of nonNewtonian fluid usually have sophisticated forms and the limitations of specific materials or rheological situations.Fractional models have been successfully applied to describe the motion of non-Newtonian fluid due to their simplicity and few parameters.As an alternative method, the Hausdorff fractal derivative possesses simpler form and higher computational efficiency compared with the fractional derivative.This paper proposes a fractal dashpot model that improves the current Newton's Law by using the Hausdorff fractal derivative.By investigating the apparent viscosity, the creep and recovery characteristics of the fractal dashpot, it shows that the proposed fractal dashpot model is suitable to describe the non-Newtonian fluid with viscoelasticity (the so-called fractal fluid).Combined the fractal dashpot model with the continuity and motion equations, the basic equation for the fractal fluid for the laminar flow between two parallel plates is derived.Moreover, the velocity distributions between two plates are numerically calculated in three cases, which can be obtained through whether there is horizontal pressure gradient or the initial velocity of upper plate.It is found that the horizontal pressure gradient can change the shape of velocity over time and delay the arrival of stable velocity.The fractal fluid with different orders has the same velocity distribution and evolution when the horizontal pressure gradient doesn't exist.In addition, the velocity of upper plate doesn't influence the difference of stable velocity between different orders of fractal fluid when the horizontal pressure gradient exists.
  • [1]
    Fox RW, Mcdonald AT, Pritchard PJ, et al. Fluid Mechanics.[s.l.]:John Wiley & Sons Inc, 2012
    [2]
    Galindo-Rosales FJ, Rubio-Hernández FJ, Sevilla A. An apparent viscosity function for shear thickening fluids. Journal of NonNewtonian Fluid Mechanics, 2011, 166(5):321-325 http://www.academia.edu/9247903/An_apparent_viscosity_function_for_shear_thickening_fluids
    [3]
    陈文芳, 蔡扶时.非牛顿流体的一些本构方程.力学学报, 1983, 19(1):16-26 http://lxxb.cstam.org.cn/CN/abstract/abstract139080.shtml

    Chen Wenfang, Cai fushi. Some constitutive equations for non-Newtonian fluid. Acta Mechanica Sinica, 1983, 19(1):16-26 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract139080.shtml
    [4]
    Bingham EC. Fluidity and Plasticity.[s.l.]:McGraw-Hill Book Co., 1922
    [5]
    Herschel W, Bulkley R. Measurement of consistency as applied to rubber-benzene solutions. Am Soc Test Proc, 1926, 26(2):621-633
    [6]
    Casson N. Rheology of disperse systems//Proceedings of a conference organized by the British Society of Rheology, Pergamon Press, New York, 1959
    [7]
    Barnes HA. Thixotropy-a review. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1-2):1-33 doi: 10.1016/S0377-0257(97)00004-9
    [8]
    Oates KM, Krause WE, Jones RL, et al. Rheopexy of synovial fluid and protein aggregation. Journal of the Royal Society Interface, 2006, 3(6):167-174 doi: 10.1098/rsif.2005.0086
    [9]
    Bautista F, De Santos JM, Puig JE, et al. Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. Ⅰ. The model. Journal of NonNewtonian Fluid Mechanics, 1999, 80(2):93-113 doi: 10.1007/s13367-013-0024-7
    [10]
    Mujumdar A, Beris AN, Metzner AB. Transient phenomena in thixotropic systems. Journal of Non-Newtonian Fluid Mechanics, 2002, 102(2):157-178 doi: 10.1016/S0377-0257(01)00176-8
    [11]
    Blackwell BC, Ewoldt RH. A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS). Journal of Nonnewtonian Fluid Mechanics, 2014, s(208-209):27-41 https://experts.illinois.edu/en/publications/non-integer-asymptotic-scaling-of-a-thixotropic-viscoelastic-mode
    [12]
    范椿.非牛顿幂律流体沿倾斜面流动的稳定性.力学学报, 1982, 18(2):155-160 http://lxxb.cstam.org.cn/CN/abstract/abstract139017.shtml

    Fan Chun. Stability of non-Newtonian power law fluid flowing down an inclined plane. Acta Mechanica Sinica, 1982, 18(2):155-160 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract139017.shtml
    [13]
    韩式方, 伍岳庆.管内上随体Maxwell流体非定常流动.力学学报, 1990, 22(5):519-525 http://lxxb.cstam.org.cn/CN/abstract/abstract140740.shtml

    Han Shifang, Wu Yueqing. A study on non-steady flow of upper-convected Maxwell fluid in tube. Acta Mechanica Sinica, 1990, 22(5):519-525 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140740.shtml
    [14]
    董波, 李维仲, 冯玉静等.幂律流体圆柱绕流的格子波尔兹曼模拟.力学学报, 2014, 46(1):44-53 doi: 10.6052/0459-1879-13-299

    Dong Bo, Li Weizhong, Feng Yujing, et al. Lattice boltzmann simulation of a power-law fluid past a circular cylinder. Acta Mechanica Sinica, 2014, 46(1):44-53 (in Chinese) doi: 10.6052/0459-1879-13-299
    [15]
    Hayat T, Siddiqui AM, Asghar S. Some simple flows of an OldroydB fluid. International Journal of Engineering Science, 2001, 39(2):135-147 doi: 10.1016/S0020-7225(00)00026-4
    [16]
    Fan W, Jiang X, Qi H. Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method. Physica A:Statistical Mechanics & Its Applications, 2015, 427:40-49 http://www.doc88.com/p-7488225879234.html
    [17]
    Bagley RL, Torvik PJ. Fractional calculus-A different approach to the analysis of viscoelastically damped structures. AIAA Journal, 2012, 21(5):741-748 doi: 10.1061/(ASCE)0733-9445(1991)117:9(2708)
    [18]
    Bagley RL, Torvik PJ. On the fractional calculus model of viscoelastic behavior. Journal of Rheology, 1986, 30(1):133-155 doi: 10.1122/1.549887
    [19]
    Blair GWS. Analytical and integrative aspects of the stress-straintime problem. Journal of Scientific Instruments, 2002, 21(5):80-84
    [20]
    Hayat T, Nadeem S, Asghar S. Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Applied Mathematics & Computation, 2004, 151(1):153-161 doi: 10.1007/s10409-006-0013-x
    [21]
    Tan W, Xu M. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mechanica Sinica, 2002, 18(4):342-349 doi: 10.1007/BF02487786
    [22]
    Tripathi D. Peristaltic transport of fractional Maxwell fluids in uniform tubes:Applications in endoscopy. Computers & Mathematics with Applications, 2011, 62(3):1116-1126
    [23]
    Mahmood A, Parveen S, Ara A, et al. Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Communications in Nonlinear Science & Numerical Simulation, 2009, 14(7):3309-3319 http://phys.scichina.com:8083/sciGe/fileup/PDF/05yg0485.pdf
    [24]
    Tong D, Wang R, Yang H. Exact solutions for the flow of nonNewtonian fluid with fractional derivative in an annular pipe. Science in China Series G:Physics, Mechanics and Astronomy, 2005, 48(4):485-495 doi: 10.1360/04yw0105
    [25]
    Tan W, Pan W, Xu M. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. International Journal of Non-Linear Mechanics, 2003, 38(5):645-650 doi: 10.1016/S0020-7462(01)00121-4
    [26]
    Tong D, Liu Y. Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. International Journal of Engineering Science, 2005, 43(3):281-289 http://phys.scichina.com:8083/sciGe/fileup/PDF/05yg0485.pdf
    [27]
    Cai W, Chen W, Xu W. Characterizing the creep of viscoelastic materials by fractal derivative models. International Journal of NonLinear Mechanics, 2016, 87:58-63 doi: 10.1016/j.ijnonlinmec.2016.10.001
    [28]
    Chen W. Time-space fabric underlying anomalous diffusion. Chaos, Solitons & Fractals, 2006, 28(4):923-929 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.376.4215
    [29]
    Chen W, Sun H, Zhang X, et al. Anomalous diffusion modeling by fractal and fractional derivatives. Computers & Mathematics with Applications, 2010, 59(5):1754-1758 http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=860655
    [30]
    Liang Y, Ye AQ, Chen W, et al. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Communications in Nonlinear Science & Numerical Simulation, 2016, 39:529-537 https://uic.pure.elsevier.com/en/publications/a-fractal-derivative-model-for-the-characterization-of-anomalous--2
    [31]
    Chen W, Zhang X, Korošak D. Investigation on fractional and fractal derivative relaxation-oscillation models. International Journal of Nonlinear Sciences & Numerical Simulation, 2010, 11(1):3-10
    [32]
    Reyesmarambio J, Moser F, Gana F, et al. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements. Journal of Power Sources, 2016, 306:636-645 doi: 10.1016/j.jpowsour.2015.12.037
    [33]
    Su X, Chen W, Xu W. Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component:Fractal dashpot. Advances in Mechanical Engineering, 2017, 9(3):1-12 doi: 10.1007/978-1-4614-9230-6_3
    [34]
    王惠民.流体力学基础.北京:清华大学出版社, 2013

    Wang Huiming. Basis of fluid mechanics. Beijing:Tsinghua University Press, 2013 (in Chinese)
  • Related Articles

    [1]Chen Lingfeng, Yu Jiajia, Li Yourong, Huang Yingzhou, Li Guyuan. STUDY ON ROTATIONAL VISCOSITY OF NEMATIC LYOTROPIC LIQUID CRYSTAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 998-1007. DOI: 10.6052/0459-1879-20-272
    [2]Zhang Peijie, Lin Jianzhong. REVIEW OF SOME RESEARCHES ON SUSPENSION OF SOLID PARTICLE IN NON-NEWTONIAN FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 543-549. DOI: 10.6052/0459-1879-17-038
    [3]He Yuchen, Liu Xiangjun. SIMULATION STUDIES OF VISCOSITIES OF Cu-H2O NANOFLUIDS BASED ON COARSE GRAINING WATER MOLECULES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 871-878. DOI: 10.6052/0459-1879-14-087
    [4]Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. DOI: 10.6052/0459-1879-13-151
    [5]Xing Dianchuan, Yan Changqi, Wang Chang, Sun Licheng. EFFECTS OF ASPECT RATIO OF RECTANGULAR CHANNEL ON CHARACTERISTICS OF SINGLE-PHASE LAMINAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 331-336. DOI: 10.6052/0459-1879-12-246
    [6]ANANALYSIS ON RADIAL LAMINAR BOUNDABY LAYER DEVELOPMENT FLOW OF POWER-LAW FLUID BETWEEN TWO PARALLEL DISKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 368-373. DOI: 10.6052/0459-1879-1994-3-1995-557
    [7]MECHANISM ANALYSIS ON ATOMIZATION OF A NON-NEWTONIAN FLUID JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 626-633. DOI: 10.6052/0459-1879-1991-5-1995-885
    [8]分层流体中栅格湍流的特性[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 257-264. DOI: 10.6052/0459-1879-1991-3-1995-836
    [9]ENTRANCE CONVERGING FLOW ANALYSIS FOR NON-NEWTONIAN FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 79-85. DOI: 10.6052/0459-1879-1990-1-1995-914
  • Cited by

    Periodical cited type(3)

    1. 慕文,李春源,葛志新. 一类含时间分数阶导数的热传导与膜振动问题的解. 安徽工业大学学报(自然科学版). 2019(02): 190-194 .
    2. 徐海珏,吴金森,白玉川. 波浪扰动下河口幂律异重流的动力场分布特性. 力学学报. 2019(06): 1699-1711 . 本站查看
    3. 刘赵淼,王文凯,逄燕. 扩展腔对方波型微混合器混合性能的影响研究. 力学学报. 2018(02): 254-262 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1200) PDF downloads (968) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return