EI、Scopus 收录
中文核心期刊
Gu Huaguang. COMPLEX DYNAMICS OF THE NERVOUS SYSTEM FOR INFORMATION PROCESSING AND ABNORMAL FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 410-420. DOI: 10.6052/0459-1879-16-315
Citation: Gu Huaguang. COMPLEX DYNAMICS OF THE NERVOUS SYSTEM FOR INFORMATION PROCESSING AND ABNORMAL FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 410-420. DOI: 10.6052/0459-1879-16-315

COMPLEX DYNAMICS OF THE NERVOUS SYSTEM FOR INFORMATION PROCESSING AND ABNORMAL FUNCTIONS

  • Received Date: November 06, 2016
  • Available Online: January 02, 2017
  • The nervous systems achieve information processing and biological functions with dynamic electronic activities. The firing rhythms and spatiotemporal behaviour of nervous systems are the dynamical characteristics of the achievement of the functions. Combined electrophysiological experiments with theoretical models, diverse rhythm patterns such as periodic, chaotic, and stochastic firing patterns, and complex rhythm transition regularities modulated by the external signal, parameter, and noise were identified with help of the bifurcations. The rhythm information (blood pressure signal and pathological pain) coding mechanism for sensory nervous system and the effect and different classes of synaptic noise to enhance information transmission capability in single pyramidal neurons of the brain were identified. The results are helpful to enhance the ability to enhance information detection and provide guidance for analgesia. The drug-modulated spiral waves/epilepsy observed in the brain cortex and synchronization transitions of firing patterns/abnormal functions of motor network were interpreted with the dynamics of single neurons such as the bifurcations and the fast-slow dynamics of the bursting pattern, which provide the way to modulate the functions of the nervous system. The spatiotemporal behaviour of the functional network of brain of the patients with autism can be acquired with big-data analysis and it was that the synchronous degree between brain regions related to the symptoms of autism reduced, which may be used as the potential diagnostic criteria. The results of the present paper provide new experimental observations, new mathematical model, new analysis method, and new viewpoints, and present identification of the complex dynamics of nervous system and deep understanding for the information processing mechanism and abnormal biological functions/diseases, which are of important scientific values and potential applications.
  • [1]
    Glass L, Mackey MC. From Clocks to Chaos:The Rhythms of Life. USA:Princeton University Press, 1988
    [2]
    Aihara K, Matsumoto G, Ikegaya Y. Periodic and non-periodic response of a periodically forced Hodgkin-Huxley oscillator. Journal of Theoretical Biology, 1984, 109(2):249-269 doi: 10.1016/S0022-5193(84)80005-3
    [3]
    Fan YS, Holden AV. From simple to complex bursting oscillatory behaviour via intermittent chaos in the Hindmarsh-Rose model for neuronal activity. Chaos, Solitons & Fractals, 1992, 2(3):349-369 https://www.researchgate.net/publication/222168935_From_Simple_to_Complex_Oscillatory_Behaviour_Via_Intermittent_Chaos_in_The_Rose-Hindmarsh_Model_for_Neuronal_Activity
    [4]
    Chay TR. Chaos in a three-variable model of an excitable cell. Physica D, 1985, 16(2):233-242 doi: 10.1016/0167-2789(85)90060-0
    [5]
    Engel AK, König P, Kreiter AK, et al. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 1991, 252(5009):1177-1179 doi: 10.1126/science.252.5009.1177
    [6]
    陆启韶, 刘深泉, 刘锋等.生物神经网络系统动力学与功能研究.力学进展, 2008, 38(6):766-793 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200806014.htm

    Lu Qishao, Liu Shenquan, Liu Feng, et al. Research on dynamics and functions of biological neural network systems. Advances in Mechanics, 2008, 38(6):766-793(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200806014.htm
    [7]
    Lu QS, Gu HG, Yang ZQ, et al. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities. Acta Mechanica Sinica, 2008, 24(6):593-628 doi: 10.1007/s10409-008-0204-8
    [8]
    王青云, 张红慧.生物神经元系统同步转迁动力学问题.力学进展, 2013, 43(1):149-162 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201301012.htm

    Wang Qingyun, Zhang Honghui. Advances of synchronization in neuronal networks. Advances in Mechanics, 2013, 43(1):149-162(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201301012.htm
    [9]
    Huang XY, Xu WF, Liang JM, et al. Spiral wave dynamics in neocortex. Neuron, 2010, 68(5):978-990 doi: 10.1016/j.neuron.2010.11.007
    [10]
    Braun HA, Wissing H, Schäfer K, et al. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 1994, 367(6460):270-273 doi: 10.1038/367270a0
    [11]
    Gu HG, Zhao ZG, Jia B, et al. Dynamics of on-off neural firing patterns and stochastic effects near a sub-critical Hopf bifurcation. PLoS ONE, 2015, 10(4):e0121028 doi: 10.1371/journal.pone.0121028
    [12]
    Gu HG, Pan BB. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Frontiers in Computational Neuroscience, 2015, 9:108 https://www.researchgate.net/profile/Hua-Guang_Gu/publication/281619723_Identification_of_neural_firing_patterns_frequency_and_temporal_coding_mechanisms_in_individual_aortic_baroreceptors/links/563c374608ae34e98c47e72f.pdf
    [13]
    Bennett GJ, Xie YK. A peripheral mononeuropathy in rat produces disorders of pain sensation like those seen in man. Pain, 1988, 33(1): 87-109 doi: 10.1016/0304-3959(88)90209-6
    [14]
    Gu HG, Ren W, Lu QS, et al. Integer multiple spiking in neuronal pacemakers without external periodic stimulation. Physics Letters A, 2001, 285(1-2):63-68 doi: 10.1016/S0375-9601(01)00278-X
    [15]
    Gu HG, Yang MH, Li L, et al. Experimental observation of the stochastic bursting caused by coherence resonance in experimental neural pacemaker. Neuro Report, 2002, 13(13):1657-1660 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ029615357
    [16]
    Gu HG, Jia B, Lu QS. Exponential decay characteristics of the integer multiple neural firing patterns. Cognitive Neurodynamics, 2011, 5(1):87-101 doi: 10.1007/s11571-010-9145-6
    [17]
    Gu HG. Biological experimental observation of an unnoticed chaos as simulated by the Hindmarsh-Rose model. PLoS ONE, 2013, 8(12):e81759 doi: 10.1371/journal.pone.0081759
    [18]
    Ren W, Hu SJ, Zhang BJ, et al. Period-adding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker. International Journal of Bifurcation & Chaos, 1997, 7(8): 1867-1872 doi: 10.1142/S0218127497001448
    [19]
    Jia B, Gu HG, Li L, et al. Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cognitive Neurodynamics, 2012, 6(1):89-106 doi: 10.1007/s11571-011-9184-7
    [20]
    Gu HG, Xiao WW. Difference between intermittent chaotic bursting and spiking of neural firing patterns. International Journal of Bifurcation & Chaos, 2014, 24(6):1450082 http://adsabs.harvard.edu/abs/2014IJBC...2450082G
    [21]
    Gu HG. Experimental observation of transitions from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos, 2013, 23(2): 023126 doi: 10.1063/1.4810932
    [22]
    Gu HG, Chen SG. Potassium-induced bifurcations and chaos in neural firing patterns observed from a biological experimental pacemaker. Science China Technological Sciences, 2014, 57(5):864-871 doi: 10.1007/s11431-014-5526-0
    [23]
    Gu HG, Pan BB, Chen GR, et al. Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dynamics, 2014, 78(1):391-407 doi: 10.1007/s11071-014-1447-5
    [24]
    Gu HG, Pan BB. A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dynamics, 2015, 81(4):2107-2126 doi: 10.1007/s11071-015-2129-7
    [25]
    Gu HG. Different bifurcation scenarios of neural firing pattern in identical pacemakers. International Journal of Bifurcation & Chaos, 2013, 23(12):1350195 doi: 10.1142/S0218127413501952
    [26]
    Gu HG, Jia B, Chen GR. Experimental evidence of a chaotic region in a neural pacemaker. Physics Letters A, 2013, 377(9):718-720 doi: 10.1016/j.physleta.2013.01.015
    [27]
    Pikovsky AS, Kurth J. Coherence resonance in a noise-driven excitable system. Physical Review Letters, 1997, 78(5):775-778 doi: 10.1103/PhysRevLett.78.775
    [28]
    Douglass JK, Wilkens L, Pantazelou E, et al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365(6444):337-340 doi: 10.1038/365337a0
    [29]
    Jia B, Gu HG. Identifying type Ⅰ excitability using dynamics of stochastic neural firing patterns. Cognitive Neurodynamics, 2012, 6(6):485-497 doi: 10.1007/s11571-012-9209-x
    [30]
    Jia B, Gu HG, Li YY. Coherence-resonance-induced neuronal firing near a saddle-node and homoclinic bifurcation corresponding to type-Ⅰ excitability. Chinese Physics Letters, 2011, 28(9):090507 doi: 10.1088/0256-307X/28/9/090507
    [31]
    Stiefel KM, Gutkin BS, Sejnowski TJ. Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS ONE, 2008, 3(12):e3947 doi: 10.1371/journal.pone.0003947
    [32]
    Xiao WW, Gu HG, Liu MR. Spatiotemporal dynamics in a network composed of neurons with different excitabilities and excitatory coupling. Science China Technological Science, 2016, 59(12):1943-1952 doi: 10.1007/s11431-016-6046-x
    [33]
    Li YY, Gu HG. The influence of initial values on spatial coherence resonance in neuronal networks. International Journal of Bifurcation & Chaos, 2015, 25(8):1550104 http://or.nsfc.gov.cn/handle/00001903-5/166144
    [34]
    Gu HG, Jia B, Li YY, et al. White noise-induced spiral waves and multiple spatial coherence resonances in a neuronal network with type Ⅰ excitability. Physica A, 2013, 392(6):1361-1374 doi: 10.1016/j.physa.2012.11.049
    [35]
    Li YY, Jia B, Gu HG, et al. Parameter diversity induced multiple spatial coherence resonances and spiral waves in neuronal network with and without noise. Communications in Theoretical Physics, 2012, 57(5):817-824 doi: 10.1088/0253-6102/57/5/12
    [36]
    Liu ZQ, Zhang HM, Li YY, et al. Multiple spatial coherence resonance induced by stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A, 2010, 389(13):2642-2653 doi: 10.1016/j.physa.2010.02.029
    [37]
    Elson RC, Selverston AI, Abarbanel HDI, et al. Inhibitory synchronization of bursting in biological neurons:Dependence on synaptic time constant. Journal of Neurophysiology, 2002, 88(3):1166-1176 https://www.researchgate.net/profile/Mikhail_Rabinovich3/publication/11183876_Inhibitory_synchronization_of_bursting_in_biological_neurons_Dependence_on_synaptic_time_constant/links/0c96051548ff5533a2000000.pdf?origin=publication_list
    [38]
    Mo J, Li YY, Wei CL, et al. Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chinese Physics B, 2010, 19(8):080513 doi: 10.1088/1674-1056/19/8/080513
    [39]
    Gu HG, Yang MH, Li L, et al. Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios. Physics Letters A, 2003, 319(1-2):89-96 doi: 10.1016/j.physleta.2003.09.077
    [40]
    Zhao ZG, Gu HG. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. Chaos, Solitons & Fractals, 2015, 80(11):96-108 https://www.researchgate.net/publication/280973993_The_influence_of_single_neuron_dynamics_and_network_topology_on_time_delay-induced_multiple_synchronous_behaviors_in_inhibitory_coupled_network
    [41]
    Gu HG, Zhao ZG. Dynamics of time delay-induced multiple synchronous behaviors in inhibitory coupled bursting neurons. PLoS ONE, 2015, 10(9):e0138593 doi: 10.1371/journal.pone.0138593
    [42]
    Belykh I, Shilnikov A. When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Physical Review Letters, 2008, 101(7):078102 doi: 10.1103/PhysRevLett.101.078102
    [43]
    Cheng W, Rolls ET, Gu HG, et al. Autism:reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain, 2015, 138(5):1382-1393 doi: 10.1093/brain/awv051
    [44]
    Gu HG, Yang MH, Li L, et al. Noise induced multi-mode firing patterns in neural period adding bifurcation scenario. International Journal of Modern Physics B, 2003, 17(22-24):4195-4200 doi: 10.1142/S0217979203022179
    [45]
    Yang MH, Liu ZQ, Li L, et al. Identifying distinct stochastic dynamics from chaos:a study on multimodal neural firing patterns. International Journal of Bifurcation & Chaos, 2009, 19(2):453-485 https://www.researchgate.net/profile/Hua-Guang_Gu/publication/220264459_Identifying_Distinct_Stochastic_Dynamics_from_Chaos_a_Study_on_Multimodal_Neural_Firing_Patterns/links/545cea7b0cf295b5615e6207.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [46]
    Zhao ZG, Jia B, Gu HG. Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dynamics, 2016, 86(10):1549-1560 doi: 10.1007/s11071-016-2976-x
  • Related Articles

    [1]Wang Rong, Liu Haojun, Liu Jianing, Wu Ying. STIFFNESS AND DAMPING FEATURES OF BRAIN COMPLEX NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3002-3011. DOI: 10.6052/0459-1879-24-176
    [2]Mo Shuai, Huang Zurui, Liu Yiheng, Zhang Wei. NON-LINEAR DYNAMICS OF AERONAUTICAL NON-ORTHOGONAL OFFSET GEAR SPLIT FLOW SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1110-1122. DOI: 10.6052/0459-1879-23-232
    [3]Mo Shuai, Zeng Yanjun, Wang Zhen, Zhang Wei. NONLINEAR DYNAMIC ANALYSIS OF HIGH SPEED AND HEAVY LOAD HERRINGBONE GEAR TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2381-2392. DOI: 10.6052/0459-1879-23-166
    [4]Peng Jun, Wang Rubin, Wang Yihong. ENERGY CODING OF HEMODYNAMIC PHENOMENA IN THE BRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209. DOI: 10.6052/0459-1879-19-010
    [5]Zhang Shu, Xu Jian. REVIEW ON NONLINEAR DYNAMICS IN SYSTEMS WITH COULPLING DELAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587. DOI: 10.6052/0459-1879-17-123
    [6]Zheng Jinchao, Wang Rubin, Zhang Zhikang. THE FIRST EXPLORATION OF THE DYNAMIC RELATION BETWEEN NERVOUS ENERGY AND NEURAL INFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 919-927. DOI: 10.6052/0459-1879-12-046
    [7]Wang Rubin, Zhang Zhikang. COMPUTATION OF NEURONAL ENERGY BASED ON INFORMATION CODING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 779-786. DOI: 10.6052/0459-1879-11-340
    [8]Jing Lu, Junfeng Li, Tianshu Wang, Baozeng Yue. Analytic study on 1:1:1 internal resonance nonlinear dynamics of a liquid-filled spacecraft with elastic appendages[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 804-812. DOI: 10.6052/0459-1879-2007-6-2006-497
    [9]Rubin Wang, Zhikang Zhang, Jing Yu. Mechanism of neurodynamics on attention and memory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 816-824. DOI: 10.6052/0459-1879-2006-6-2005-600
    [10]A METHOD FOR DETERMINING THE PERIODIC SOLUTION AND ITS STABILITY OF A DYNAMIC SYSTEM WITH LOCAL NONLINEARITIES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(5): 572-579. DOI: 10.6052/0459-1879-1998-5-1995-163
  • Cited by

    Periodical cited type(18)

    1. 何沛妍,杨丽新,党元辰,顾梓玉. 电磁效应下耦合时滞神经元动力学分析. 东北师大学报(自然科学版). 2023(04): 96-104 .
    2. 齐会如,段利霞,徐浩. 耦合pre-B?tzinger复合体中放电模式的动力学分析. 动力学与控制学报. 2022(02): 22-35 .
    3. 郑钦洪,宋长宝,梁妃学. 初级听觉皮层对声音刺激的听觉响应模式. 南方医科大学学报. 2022(08): 1212-1220 .
    4. 肖冉,安新磊,祁慧敏,乔帅. 电场作用下HR神经元的分岔分析及参数辨识. 浙江大学学报(理学版). 2022(06): 691-697+705 .
    5. 冀文超,段利霞,齐会如. 电磁场下神经元模型中混合簇的分岔机制. 力学学报. 2021(06): 1733-1746 . 本站查看
    6. 肖冉,安新磊,祁慧敏. 电磁场效应下HR神经元的全局分岔与参数辨识. 动力学与控制学报. 2021(05): 81-88 .
    7. 马芬,段利霞,梁桐桐,梁王娟,赵勇. 耦合pre-B?tzinger复合体神经元中混合簇放电的多时间尺度动力学分析. 动力学与控制学报. 2020(02): 82-90 .
    8. 安新磊,张莉. 一类忆阻神经元的电活动多模振荡及Hamilton能量反馈控制. 力学学报. 2020(04): 1174-1188 . 本站查看
    9. 乔帅,安新磊,王红梅,张薇. 磁通e-HR神经元隐藏放电与分岔行为的研究. 云南大学学报(自然科学版). 2020(04): 685-694 .
    10. 马新东,姜文安,张晓芳,韩修静,毕勤胜. 一类三维非线性系统的复杂簇发振荡行为及其机理. 力学学报. 2020(06): 1789-1799 . 本站查看
    11. 张毅,韩修静,毕勤胜. 串联式叉型滞后簇发振荡及其动力学机制. 力学学报. 2019(01): 228-236 . 本站查看
    12. 郑健康,张晓芳,毕勤胜. 一类混沌系统中的簇发振荡及其延迟叉形分岔行为. 力学学报. 2019(02): 540-549 . 本站查看
    13. DU Lin,CAO ZiLu,LEI YouMing,DENG ZiChen. Electrical activities of neural systems exposed to sinusoidal induced electric field with random phase. Science China(Technological Sciences). 2019(07): 1141-1150 .
    14. 彭俊,王如彬,王毅泓. 大脑血液动力学现象中的能量编码. 力学学报. 2019(04): 1202-1209 . 本站查看
    15. 蓝昱群,关利南,古华光. 负反馈诱发神经电振荡的反常现象的复杂动力学. 力学学报. 2019(04): 1122-1133 . 本站查看
    16. 李静,张正娣,彭淼,曲子芳. 一类慢变Filippov捕食-被捕食系统的分岔机理分析. 数学的实践与认识. 2018(17): 314-320 .
    17. 贾祥宇,吴禹. 动力学与生命科学的交叉研究进展综述. 动力学与控制学报. 2017(03): 279-288 .
    18. 燕军,周漓. 动态脑电图对小儿神经系统疾病的诊断价值. 中国卫生标准管理. 2017(19): 55-57 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (1277) PDF downloads (728) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return