EI、Scopus 收录
中文核心期刊
Wu Manqiao, Zhu Jihong, Yang Kaike, Zhang Weihong. INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389. DOI: 10.6052/0459-1879-16-273
Citation: Wu Manqiao, Zhu Jihong, Yang Kaike, Zhang Weihong. INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389. DOI: 10.6052/0459-1879-16-273

INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL

  • Received Date: September 26, 2016
  • Available Online: December 26, 2016
  • Smart structures are those equipped with sensors/actuators made of smart materials, which have the capability to control structure movement in such a way that makes the design more efficient. However, due to systematic complexity and multidisciplinary objectives, the optimization design of such structures in accurate shape control becomes very challenging. This paper proposes an integrated layout and topology optimization design method for accurate shape control of smart structures with surface bonded piezoelectric actuators. The multi-point constraints (MPC) method is used to simulate the bonding connections between movable piezoelectric actuators and host supporting structures. A new weighted shape error function based on desired deflections of observation points is defined to fulfill accurate shape control of piezoelectric smart structure. Through the proposed method, the optimal position and orientation of each piezoelectric actuator as well as the topology configuration of host supporting structure are founded, which significantly improves the systematic actuating and morphing performance of piezoelectric smart structures. Further studies on the relationships of structural stiffness with shape morphing constraint and volume fraction constraint are carried out, and distortions of load carrying path in optimized designs are illustrated. With several numerical results, the proposed integrated optimization method is proved to be an efficient way to decrease the error between computed and desired surface and achieve the accurate shape control of piezoelectric smart structures.
  • [1]
    Andoh F, Washington G, Yoon H, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators. Journal of Intelligent Materials Systems and Structures, 2004, 15(1):3-15 doi: 10.1177/1045389X04039262
    [2]
    Barrett R. Active plate and wing research using EDAP elements. Smart Materials and Structures, 1992, 1(3):214 doi: 10.1088/0964-1726/1/3/005
    [3]
    Milojevié AP, Pavlovié ND. Development of a new adaptive shape morphing compliant structure with embedded actuators. Journal of Intelligent Material Systems and Structures, 2016, 21(10):1306-1328 https://www.researchgate.net/publication/281431710_Development_of_a_new_adaptive_shape_morphing_compliant_structure_with_embedded_actuators
    [4]
    Saggere L, Kota S. Static shape control of smart structures using compliant mechanisms. AIAA Journal, 1999, 37(5):572-578 doi: 10.2514/2.775
    [5]
    Sofla AYN, Meguid SA, Tan KT, et al. Shape morphing of aircraft wing:Status and challenges. Materials and Design, 2010, 31(3): 1284-1292 doi: 10.1016/j.matdes.2009.09.011
    [6]
    Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials and Design. 2014, 56(56):1078-1113 http://www.sciencedirect.com/science/article/pii/S0261306913011345
    [7]
    Achuthan A, Keng AK, Ming WC. Shape control of coupled nonlinear piezoelectric beams. Smart materials and structures, 2001, 10(5):914 doi: 10.1088/0964-1726/10/5/308
    [8]
    Chandrashekhara K, Varadarajan S. Adaptive shape control of composite beams with piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 1997, 8(2):112-124 doi: 10.1177/1045389X9700800202
    [9]
    Chee C, Tong LY, Steven G. A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures. Computational Mechanics, 2000, 26(2):115-128 doi: 10.1007/s004660000159
    [10]
    Koconis DB, Kollar LP, Springer GS. Shape control of composite plates and shells with embedded actuators. Ⅱ. Desired shape specified. Journal of Composite Materials, 1994, 28(3):262-285 doi: 10.1177/002199839402800305
    [11]
    Sun DC, Tong LY. Static shape control of structures using nonlinear piezoelectric actuators with energy constraints. Smart Materials and Structures, 2004, 13(5):1059 doi: 10.1088/0964-1726/13/5/012
    [12]
    Chee C, Tong LY, Steven GP. Piezoelectric actuator orientation optimization for static shape control of composite plates. Composite Structures, 2002, 55(2):169-184 doi: 10.1016/S0263-8223(01)00144-1
    [13]
    Nguyen Q, Tong L. Shape control of smart composite plate with non-rectangular piezoelectric actuators. Composite Structures, 2004, 66(1-4):207-214 doi: 10.1016/j.compstruct.2004.04.039
    [14]
    Agrawal BN, Treanor KE. Shape control of a beam using piezoelectric actuators. Smart Materials and Structures, 1999, 8(6):729 doi: 10.1088/0964-1726/8/6/303
    [15]
    Bruch Jr JC, Sloss JM, Adali S, et al. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams. Smart Materials and Structures, 2000, 9(2):205 doi: 10.1088/0964-1726/9/2/311
    [16]
    Sun DC, Tong LY. Design optimization of piezoelectric actuator patterns for static shape control of smart plates. Smart Materials and Structures, 2005, 14(6):1353 doi: 10.1088/0964-1726/14/6/027
    [17]
    Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055 doi: 10.1007/s00158-013-0978-6
    [18]
    Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization:post 2000. Structural and Multidisciplinary Optimization, 2014, 49(1):1-38 doi: 10.1007/s00158-013-0956-z
    [19]
    Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2015
    [20]
    Kögl M, Silva EILC. Topology optimization of smart structures:design of piezoelectric plate and shell actuators. Smart Materials and Structures, 2005, 14(2):387 doi: 10.1088/0964-1726/14/2/013
    [21]
    Kang Z, Tong LY. Topology optimization-based distribution design of actuation voltage in static shape control of plates. Computers and Structures, 2008, 86(19-20):1885-1893 doi: 10.1016/j.compstruc.2008.03.002
    [22]
    Luo QT, Tong LY. Design and testing for shape control of piezoelectric structures using topology optimization. Engineering Structures, 2015, 97:90-104 doi: 10.1016/j.engstruct.2015.04.006
    [23]
    Agrawal SK, Tong D, Nagaraja K. Modeling and shape control of piezoelectric actuator embedded elastic plates. Journal of Intelligent Material Systems and Structures, 1994, 5(4):514-521 doi: 10.1177/1045389X9400500407
    [24]
    Kang Z, Wang R, Tong LY. Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16):1467-1478 doi: 10.1016/j.cma.2011.01.005
    [25]
    Luo Z, Luo QT, Tong LY, et al. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Composite Structures, 2011, 93(2):406-418 doi: 10.1016/j.compstruct.2010.09.001
    [26]
    Carbonari RC, Silva ECN, Nishiwaki S. Optimum placement of piezoelectric material in piezoactuator design. Smart Materials and Structures, 2007, 16(1):207 doi: 10.1088/0964-1726/16/1/025
    [27]
    Mukherjee A, Joshi S. Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA Journal, 2002, 40(6):1204-1210 doi: 10.2514/2.1772
    [28]
    Wang YQ, Luo Z, Zhang XP, et al. Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures, 2014, 23(4) 045024 doi: 10.1088/0964-1726/23/4/045024
    [29]
    Gao HH, Zhu JH, Zhang WH, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 387-408 doi: 10.1016/j.cma.2015.02.022
    [30]
    Zhu JH, Zhang WH, Beckers P. Integrated layout design of multicomponent system. International Journal for Numerical Methods in Engineering, 2009, 78(6):631-651 doi: 10.1002/nme.v78:6
    [31]
    Zhu JH, Zhang WH, Beckers P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Structural and Multidisciplinary Optimization, 2008, 36(1):29-41 doi: 10.1007/s00158-007-0155-x
    [32]
    Luo Z, Tong LY, Luo JZ, et al. Design of piezoelectric actuators using a multiphase level set method of piecewise constants. Journal of Computational Physics, 2009, 228(7):2643-2659 doi: 10.1016/j.jcp.2008.12.019
    [33]
    Zillober C. A globally convergent version of the method of moving asymptotes. Structural Optimization, 1993
    [34]
    Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and locak minima. Structural Optimization, 1998, 16(1):68-75 doi: 10.1007/BF01214002
    [35]
    Zhu JH, Gao HH, Zhang WH, et al. A multi-point constraints based integrated layout and topology optimization design of multicomponent systems. Structural and Multidisciplinary Optimization, 2015, 51(2):397-407 doi: 10.1007/s00158-014-1134-7
  • Related Articles

    [1]Cao Leilei, Wu Jianhua, Fan Hao, Zhang Chuanzeng, Sun Linlin. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION OF PHONONIC CRYSTALS CONSIDERING MANUFACTURING CONSTRAINT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1136-1144. DOI: 10.6052/0459-1879-21-605
    [2]Zhang Zhe, Dai Honghua, Feng Haoyang, Wang Xuechuan, Yue Xiaokui. EFFICIENT NUMERICAL METHOD FOR ORBIT DYNAMIC FUNCTIONS WITH INITIAL VALUE AND TWO-POINT BOUNDARY-VALUE CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516. DOI: 10.6052/0459-1879-21-336
    [3]Qian Yingjing, Zhai Guanqiao, Zhang Wei. PLANAR PERIODIC ORBIT CONSTRUCTION AROUND THE TRIANGULAR LIBRATION POINTS BASED ON POLYNOMIAL CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 154-164. DOI: 10.6052/0459-1879-16-215
    [4]Ye Hongling, Shen Jingxian, Sui Yunkang. DYNAMIC TOLOGICAL OPTIMAL DESIGN OF THREE-DIMENSIONAL CONTINUUM STRUCTURES WITH FREQUENCIES CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037-1045. DOI: 10.6052/0459-1879-12-069
    [5]Gao Tong Zhang Weihong Pierre Duysinx. Topology optimization of structures designed with multiphase materials: volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 296-305. DOI: 10.6052/0459-1879-2011-2-lxxb2010-303
    [6]Qiang Liu, Renwen Chen, Zhiwei Xu, Xinwei Wang. The vibration suppression system for vertical tail based on smart piezoelectric structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 603-608. DOI: 10.6052/0459-1879-2009-4-2008-476
    [7]Qi Wang. Modeling and simulation of multi-body systems with multi-friction and fixed bilateral constraint[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 105-112. DOI: 10.6052/0459-1879-2009-1-2008-309
    [8]A STANDARD SOLUTION FOR THE DYNAMICS OF MULTI POINT COLLISION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 252-256. DOI: 10.6052/0459-1879-1998-2-1995-124
    [9]SOLUTION OF MULTI POINT ELASTIC IMPACTS OF STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 612-616. DOI: 10.6052/0459-1879-1997-5-1995-274
    [10]STRUCTURAL RESPONSES TO NONSTATIONARY MULTI-POINT RANDOM SEISMIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 567-576. DOI: 10.6052/0459-1879-1995-5-1995-468
  • Cited by

    Periodical cited type(8)

    1. 庞欢,刘逸茗,林晔,金朋,刘敬一. 压电作动器振动抑制系统可靠性评估及优化设计. 西北工业大学学报. 2023(06): 1097-1106 .
    2. 林晔,张晓鹏,胡骏,亢战. 压电智能结构拓扑优化研究进展. 固体力学学报. 2020(05): 391-408 .
    3. 程智,潘颖,张婷,刘彬. 柔性悬臂结构极点配置阻尼设计与振动控制. 西安科技大学学报. 2020(06): 1081-1087 .
    4. 丛培通,王悦. 基于多尺度计算异形节点钢框架结构抗震性能研究. 低温建筑技术. 2019(01): 53-59 .
    5. 王选,胡平,龙凯. 考虑嵌入移动孔洞的多相材料布局优化. 力学学报. 2019(03): 852-862 . 本站查看
    6. 蔡守宇,张卫红,高彤,赵军. 基于固定网格和拓扑导数的结构拓扑优化自适应泡泡法. 力学学报. 2019(04): 1235-1244 . 本站查看
    7. 何燕丽,赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报. 2019(04): 1170-1179 . 本站查看
    8. 张力丹,张盛,陈飙松,李云鹏. 结构优化半解析灵敏度及误差修正改进算法. 力学学报. 2018(04): 949-960 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1064) PDF downloads (685) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return