Citation: | Liu Liqin, Guo Ying, Zhao Haixiang, Tang Yougang. DYNAMIC MODELING, SIMULATION AND MODEL TESTS RESEARCH ON THE FLOATING VAWT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307. DOI: 10.6052/0459-1879-16-264 |
[1] |
Willy T, Tjukup M, Sohif M, et al. Darrieus vertical axis wind turbine for power generation Ⅱ:challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renewable Energy, 2015, 75:560-571 doi: 10.1016/j.renene.2014.10.039
|
[2] |
Madjid K, Torgeir M. Wave and wind induced dynamic response of a spar-type offshore wind turbine. Journal of Waterway Port Coastal and Ocean Engineering, 2012, 138:9-20 doi: 10.1061/(ASCE)WW.1943-5460.0000087
|
[3] |
张亮, 叶小嵘, 吴海涛等.海上浮式风力机环境载荷及运动性能分析.太阳能学报, 2013, 34(5):876-881 http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201305025.htm
Zhang Liang, Ye Xiaorong, Wu Haitao, et al. Analysis on environmental load and motion performance of floating offshore wind turbine. ActaEnergiae Solaris Sinica, 2013, 34(5):876-881(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201305025.htm
|
[4] |
Ramachandran GKV, Bredmose H, Sorensen JN, et al. Fully coupled three-dimensional dynamic response of a tension-leg platform floating wind turbine in waves and wind. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2):1-12 http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1861306
|
[5] |
Ma Y, Hu ZQ. Dynamic analysis for a spar-type wind turbine under different sea states//Proceedings of the ASME 201332th International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 2013
|
[6] |
Cahay M, Luquiau E, Smadja C. Use of a vertical wind turbine in an offshore floating wind farm//Proceedings of the Offshore Technology Conference, OTC-21705-MS, Houston, Texas, USA, 2011
|
[7] |
Vita L. Offshore floating vertical axis wind turbines with rotating platform.[PhD Thesis]. Copenhagen, Denmark:Danish Technical University, 2011
|
[8] |
Blusseau P, Patel MH. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure. Renewable Energy, 2012, 46:31-42 doi: 10.1016/j.renene.2012.02.023
|
[9] |
Cheng ZS, Wang K, Gao Z, et al. Dynamic response analysis of three floating wind turbine concepts with a two-bladed Darrieus rotor. Journal of Ocean and Wind Energy, 2015, 2(4):213-222 https://www.researchgate.net/publication/291815950_Dynamic_Response_Analysis_of_Three_Floating_Wind_Turbine_Concepts_with_a_Two-Bladed_Darrieus_Rotor
|
[10] |
Collu M, Borg M, Manuel L. On the relative importance of loads acting on a floating vertical axis wind turbine system when evaluating the global system response//Proceedings of the ASME 201634th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016-54628, Busan, South Korea, 2016
|
[11] |
Jonkman J, Buhl M. Loads analysis of a floating offshore wind turbine using fully coupled simulation//Wind Power 2007 Conference & Exhibition, Los Angeles, USA, 2007
|
[12] |
Garrad Hassan GL. Bladed user manual version 4.2. Bristol, England:Garrad Hassan & Partners Ltd, St Vincent's Works, 2012
|
[13] |
Myhr A, Maus KJ, Nygaard TA. Experimental and computational comparisons of the OC3-HYWIND and Tension-Leg-Buoy (TLB) floating wind turbine conceptual designs//Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, HI, USA, 2011
|
[14] |
Withee JE. Fully coupled dynamic analysis of a floating wind turbine system.[Master Thesis]. Massachusetts, USA:Massachusetts Institute of Technology, 2004
|
[15] |
Nielsen FG, Hanson TD, Kaare B. Integrated dynamic analysis of floating offshore wind turbines//Proceedings of the International Conference Offshore Mechanics and Arctic Engineering, OMAE 2006-92291, Hamburg, Germany, 2006
|
[16] |
Berg DE. An improved double-multiple stream tube model for the Darrieus type vertical-axis wind turbine//Proceedings of the sixth Biennial Wind Energy Conference and Workshop, Minneapolis, NM, USA, 1983
|
[17] |
Strickland JH, Webster BT, Nguyen TA. Vortex model of the Darrieus turbine:an analytical and experimental study. Sandia National Laboratories, Albuquerque, N.M., USA, 1980
|
[18] |
Paraschivoiu I. Aerodynamic loads and performance of the Darrieus rotor. Journal of Energy, 1982, 6:406-412 doi: 10.2514/3.62621
|
[19] |
Collu M, Borg M, Shires A, et al. Progress on the development of a coupled model of dynamics for floating offshore vertical axis wind turbines//Proceedings of the ASME 201332nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013-54337, Nantes, France, 2013
|
[20] |
Wang K, Hansen MOL, Moan T. Dynamic analysis of a floating vertical axis wind turbine under emergency shutdown using hydrodynamic brake. Energy Procedia, 2014, 53:53-69 https://www.researchgate.net/publication/270746857_Dynamic_Analysis_of_a_Floating_Vertical_Axis_Wind_Turbine_Under_Emergency_Shutdown_Using_Hydrodynamic_Brake
|
[21] |
Owens BC, Hurtado JE, Paquette JA. Aero-elastic modeling of large offshore vertical-axis wind turbines:development of the offshore wind energy simulation toolkit//Proceeding of the 54th AIAA/ASME/ASCE/A-HS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2013-1552, Boston, MA., USA, 2013
|
[22] |
Liu LQ, Zhou B, Tang YG. Study on the nonlinear dynamical behaviour of deep sea Spar platform by numerical simulation and model experiment. Journal of Vibration & Control, 2014, 20(10):1528-1553 https://www.researchgate.net/publication/270702012_Study_on_the_nonlinear_dynamical_behavior_of_deepsea_Spar_platform_by_numerical_simulation_and_model_experiment
|
[23] |
Huang L, Liu LQ, Liu CY, et al. The nonlinear bifurcation and chaos of coupled heave and pitch motions of a truss spar platform. Journal of Ocean University of China, 2015, 14:795-802 doi: 10.1007/s11802-015-2592-2
|
[24] |
Paraschivoiu I. Wind Turbine Design with Emphasis on Darrieus Concept. Canada:Polytechnic International Press, 2002
|
[25] |
IEC61400-3. Wind turbines, part 3:design requirements for offshore wind turbines. Geneva, Switzerland:International Electrochemical Commission, 2009
|
[26] |
Berg DE.An improved double-multiple stream tube model for the Darrieus type vertical-axis wind turbine//Proceedings of the sixth Biennial Wind Energy Conference and Workshop, Minneapolis, NM, USA, 1983
|
[27] |
Pan ZY, Vada T, Finne S, et al. Benchmark study of numerical approaches for wave-current interaction problem of offshore floaters//Proceedings of the ASME 201634th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016-54411, Busan, South Korea, 2016
|
[28] |
Faltinsen OM. Sea Loads on Ships and Offshore Structures. Cambridge, UK:Cambridge University Press, 1990
|
[29] |
API 2A-WSD (RP 2A-WSD). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. Washington D.C., USA:American Petroleum Institute, 2000
|
[30] |
Ractliffe AT. Validity of quasi-static and approximate formulae in the context of cable and flexible riser dynamics//Proceedings of the 4th International Conference on Behavior of Offshore Structures, Delft, The Netherlands, 1985
|
[31] |
Paraschivoiu I. Double-multiple stream tube model for studying vertical-axis wind turbines. Journal of Propulsion, 1988, 4(4):370-377 doi: 10.2514/3.23076
|
[32] |
Liu LQ, Zhang XR, Guo Y, et al. Study on the hydrodynamic characteristic of a spar type floating foundation which used to support a vertical axis wind turbine//Proceedings of the ASME 201634th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016-54337, Busan, South Korea, 2016
|
[33] |
Tang YG, Song K, Wang B. Experiment study of dynamics response for wind turbine system of floating foundation. China Ocean Eng, 2015, 29(6):835-846 doi: 10.1007/s13344-015-0059-2
|
1. |
姜贞强,王滨. 海上风力机前端风电场瞬态重构研究. 太阳能学报. 2024(03): 65-72 .
![]() | |
2. |
张立军,于洪栋,缪俊杰,朱怀宝,顾嘉伟,李想. 新型漂浮式垂直轴风力发电机平台的动态响应分析. 船海工程. 2020(03): 125-131 .
![]() | |
3. |
陈嘉豪,胡志强. 半潜式海上浮式风机气动阻尼特性研究. 力学学报. 2019(04): 1255-1265 .
![]() | |
4. |
刘利琴,赵海祥,赵晶瑞,郭颖. 考虑Spar型浮式基础粘性阻尼作用浮式垂直轴风机运动性能研究(英文). 船舶力学. 2019(09): 1110-1121 .
![]() | |
5. |
周斌珍,胡俭俭,谢彬,丁波寅,夏英凯,郑小波,林志良,李晔. 风浪联合发电系统水动力学研究进展. 力学学报. 2019(06): 1641-1649 .
![]() | |
6. |
王千,刘桦,房詠柳,邵奇. 孤立波与淹没平板相互作用的三维波面和水动力实验研究. 力学学报. 2019(06): 1605-1613 .
![]() | |
7. |
陈嘉豪,刘格梁,胡志强. 海上浮式风机时域耦合程序原理及其验证. 上海交通大学学报. 2019(12): 1440-1449 .
![]() | |
8. |
刘利琴,赵海祥,袁瑞,黄鑫,李焱. H型浮式垂直轴风力机刚—柔耦合多体动力学建模及仿真. 海洋工程. 2018(03): 1-9 .
![]() | |
9. |
于晓东,袁腾飞,李代阁,曲航,郑旭航. 极端工况双矩形腔静压推力轴承动态特性. 力学学报. 2018(04): 899-907 .
![]() | |
10. |
王磊,王娜. 垂直轴风机可行性分析报告. 智能城市. 2017(06): 53-54 .
![]() |