EI、Scopus 收录
中文核心期刊
Qin Zecong, Fang Le. AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325. DOI: 10.6052/0459-1879-16-180
Citation: Qin Zecong, Fang Le. AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325. DOI: 10.6052/0459-1879-16-180

AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS

  • Received Date: June 30, 2016
  • Revised Date: September 03, 2016
  • Homogeneous isotropic turbulence (HIT) is one of the simplest ideal turbulence states, and is also one of the most important subjects in basic turbulence theory researches. HIT fields are usually initialized in the spectrum space via the method proposed by Rogallo, and then transformed in physical space. The current paper points out that initial fields thus generated are anisotropic in axis directions of their computational domain, which can be reflected in structure functions and in possibility density distribution of velocity components. Even though such anisotropy will disappear after an average operation of a large number of initial field samples, the anisotropy fluctuation between samples is considerately big, which is not favorable for the establishment of an HIT. Basing on this existing methodology, we then proposed an improved Rogallo method, named the modulus-averaging method, which firstly conducts the Rogallo method in all the 3 axis directions, then carries out a modulus-averaging operation, and finally control the modulus via a given spectrum function. This method can keep the initial filed spectrum and, reduce the anisotropy fluctuation of each single field to generate "more isotropic" initial fields. Statistically, this new method can lower the relative standard deviations of structure functions and velocity possibility density distribution by about 10%.
  • 1 张兆顺,崔桂香,许春晓. 湍流大涡数值模拟的理论与应用. 北京:清华大学出版社,2008(Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Application of Large Eddy Numerical Simulation. Beijing:Tsinghua University Press, 2008(in Chinese))
    2 Pope SB. Turbulent Flows. New York:Cambridge University Press, 2000
    3 李瑞霞,柳朝晖,贺铸等. 各向同性湍流内颗粒碰撞率的直接模拟研究. 力学学报,2006,38(1):25-32(Li Ruixia, Liu Zhaohui, He Zhu, et al. Direct numerical simulation of inertial particle collisions in isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):25-32(in Chinese))
    4 李新亮,傅德薰,马延文. 可压缩均匀各向同性湍流的直接数值模拟. 中国科学(A辑),2002,32(8):716-724(Li Xinliang, Fu Dexun, Ma Yanwen. Direct numerical simulation of compressible homogeneous isotropic turbulence. Science in China(Series A), 2002, 32(8):716-724(in Chinese))
    5 张曙光,雷磊,何国威. 均匀各向同性湍流的频率波数能量谱. 力学学报,2003,35(3):317-320(Zhang Shuguang, Lei Lei, He Guowei. Frequency-wavenumber energy spectra in isotropic turbulence. Acta Mechanica Sinica, 2003, 35(3):317-320(in Chinese))
    6 赵松年,胡非. 湍流问题:如何看待"均匀各向同性湍流"?中国科学:物理学力学天文学,2015,45(2):024701(Zhao Songnian, Hu Fei. Turbulence question:How do view "the homogeneous and isotropic turbulence"? Science China Physics, Mechanics & Astronomy, 2015, 45(2):024701(in Chinese))
    7 方乐,杨云柯,王洪涛等. 全场离散Tophat过滤操作的快速算法. 数值计算与计算机应用,2009,30(3):218-224(Fang Le, Yang Yunke, Wang Hongwei, et al. A rapid algorithm for Tophat filter operation in discrete field. Journal on Numerical and Computer Applications, 2009, 30(3):218-224(in Chinese))
    8 方乐,崔桂香,许春晓等. 标量湍流的能量传输特性. 计算物理, 2006,23(6):692-698(Fang Le, Cui Guixiang, Xu Chunxiao, et al. Energy transfer in scalar turbulence. Chinese Journal of Computational Physics, 2006, 23(6):692-698(in Chinese))
    9 Stepanov R, Plunian F, Kessar M, et al. Systematic bias in the calculation of spectral density from a three-dimensional spatial grid. Physical Review E, 2014, 90(5):053309
    10 Fang L, Cui GX, Xu CX, et al. Multi-scale analysis of energy transfer in scalar turbulence. Chinese Physics Letters, 2005, 22(11):2877
    11 Cichowlas C, Bonaïti P, Debbasch F, et al. Effective dissipation and turbulence in spectrally truncated Euler flows. Physical Review Letters, 2005, 95(26):264502
    12 Bos WJT, Bertoglio JP. Dynamics of spectrally truncated inviscid turbulence. Physics of Fluids, 2006, 18(7):071701
    13 Brun C, Pumir A. Statistics of Fourier modes in a turbulent flow. Physical Review E, 2001, 63(5):056313
    14 Qin ZC, Fang L, Fang J. How isotropic are turbulent flows generated by using periodic conditions in a cube? Physics Letters A, 2016, 380(13):1310-1317
    15 Hinze JO. Turbulence, 2nd edn. New York:McGraw-Hill International Book Company, 1975
    16 Fang L, Bos WJT, Jin GD. Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Physics of Fluids, 2015, 27(12):125102
    17 马威,方乐,邵亮等. 可解尺度各向同性湍流的标度律. 力学学报,2011, 43(2):267-276(MaWei, Fang Le, Shao Liang, et al. Scaling law of resolved-scale isotropic turbulence. Chinse Journal of Theoretical and Applied Mechanics, 2011, 43(2):267-276(in Chinese))
    18 Fang L, Shao L, Bertoglio JP, et al. An improved velocity increment model based on Kolmogorov equation of filtered velocity. Physics of Fluids, 2009, 21(6):065108
    19 Gotoh T, Fukayama D, Nakano T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Physics of Fluids, 2002, 14(3):1065-1081
    20 Cui GX, Zhou HB, Zhang ZS, et al. A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Physics of Fluids, 2004, 16(8):2835-2842
    21 乔海军,李会元. 二维各向同性湍流直接数值模拟的六边形谱方法及GPU实现和优化. 数值计算与计算机应用,2013,34(6):147-160(Qiao Haijun, Li Huiyuan. Hexagonal spectral method for direct numerical simulation of two-dimensional homogeneous isotropic turbulence and their GPU implementation and optimization. Journal on Numerical Methods and Computer Applications, 2013, 34(6):147-160(in Chinese))
    22 Rogallo RS. Numerical experiments in homogeneous turbulence. Technical Report 81315, NASA, 1981
    23 Lesieur M. Turbulence in Fluids. Springer Science & Business Media, 2012
    24 Fang L, Zhu Y, Liu YW, et al. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgridscale modeling. Physics Letters A, 2015, 379(38):2331-2336
    25 Fang L, Bos WJT, Shao L, et al. Time reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. Journal of Turbulence, 2012(13):N3
    26 Hearst RJ, Lavoie P. Velocity derivative skewness in fractalgenerated, non-equilibrium grid turbulence. Physics of Fluids, 2015, 27(7):071701
    27 Fang L, Zhang YJ, Fang J, et al. Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Physical Review E, 2016, 94(2):023114
    28 Zhao X, He GW. Space-time correlations of fluctuating velocities in turbulent shear flows. Physical Review E, 2009, 79(5):046316
    29 He GW, Zhang JB. Elliptic model for space-time correlations in turbulent shear flows. Physical Review E, 2006, 73(5):055303
    30 Vassilicos JC. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 2015, 47:95-114
  • Related Articles

    [1]Xu Yazhou, Tian Rui. A PSEUDO-SPECTRAL METHOD FOR THE GENERALIZED DENSITY EVOLUTION EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2415-2422. DOI: 10.6052/0459-1879-23-633
    [2]Xu Haijue, Wu Jinsen, Bai Yuchuan. DYNAMIC DISTRIBUTION OF POWER-LAW DENSITY CURRENT IN ESTUARY UNDER WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1699-1711. DOI: 10.6052/0459-1879-19-073
    [3]Chen Jianbing, Lü Mengze. A NEW METHOD FOR THE PROBABILITY DENSITY OF MAXIMUM ABSOLUTE VALUE OF A MARKOV PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1437-1447. DOI: 10.6052/0459-1879-19-104
    [4]Shi Sheng, Du Dongsheng, Wang Shuguang, Li Weiwei. NON-UNIFORM TIME STEP TVD SCHEME FOR PROBABILITY DENSITY EVOLUTION FUNCTION WITH IMPROVEMENT OF INITIAL CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1223-1234. DOI: 10.6052/0459-1879-18-446
    [5]Ye Xiaoyan, Wang Dengming, Zheng Xiaojing. A MODIFIED NONLOCAL RHEOLOGY MODEL FOR DENSE GRANULAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 40-47. DOI: 10.6052/0459-1879-15-287
    [6]Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. DOI: 10.6052/0459-1879-13-174
    [7]The joint probability density function of nonlinear dynamic stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 8-8. DOI: 10.6052/0459-1879-2006-5-2005-430
    [8]Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 127-133. DOI: 10.6052/0459-1879-2006-1-2005-054
    [9]THE PROBABILITY DENSITY FUNCTIONS OF THE STATIONARY RESPONSE OF CERTAIN CLASSES OF NONLINEAR SYSTEMS TO STOCHASTIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 92-102. DOI: 10.6052/0459-1879-1991-1-1995-813
    [10]THE DISTRIBUTION OF SOLID PARTICLES SUSPENDED IN A TURBULENT FLOW: A STOCHASTIC APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 28-36. DOI: 10.6052/0459-1879-1991-1-1995-806
  • Cited by

    Periodical cited type(3)

    1. 高婉莹,吴健发,魏春岭. 航天器威胁规避自主决策规划方法研究综述. 中国空间科学技术(中英文). 2024(04): 71-89 .
    2. 幸林泉,肖应民,杨志斌,韦正旻,周勇,高赛军. 基于安全强化学习的航天器交会制导方法. 计算机科学. 2023(08): 271-279 .
    3. 张禹琛,成国瑞,宋申民. 无速度测量下的航天器安全接近位姿一体化控制. 宇航学报. 2022(10): 1345-1360 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1704) PDF downloads (742) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return