Citation: | Shao Chuanping, Zhu Yuanyuan. THE DEFORMATION AND VIBRATION OF TULIP LEAVES IN WIND[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 431-440. DOI: 10.6052/0459-1879-16-179 |
[1] |
Ennos AR. Compliance in plants//Jenkins CHM ed. Compliant Structures in Nature and Engineering, 21-40. Montana:WIT Press, 2005
|
[2] |
Vogel S. The Life of A Leaf, 204-225. Chicago:The University of Chicago Press, 2012
|
[3] |
Hadhazy A. Power plants:Artificial trees that harvest sun and wind to generate electricity. Scientific American, 2009, 306(5):31-32 https://www.scientificamerican.com/article/artificial-trees-harvest-sun-and-wind-energy/
|
[4] |
Sharif S, Gentry TR, Yen J, et al. Transformative solar panels:a multidisciplinary approach. International Journal of Architectural Computing, 2013, 11(2):227-245 doi: 10.1260/1478-0771.11.2.227
|
[5] |
Schindler D, Bauhus J, Mayer H. Wind effects on trees. European Journal of Forest Research, 2012, 131:159-163 doi: 10.1007/s10342-011-0582-5
|
[6] |
Vogel S. Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany, 1989, 40(217):941-948 https://www.researchgate.net/profile/Steven_Vogel3/publication/245974119_Drag_and_Reconfiguration_of_Broad_Leaves_in_High_Winds/links/55a4fdde08aef604aa041490.pdf
|
[7] |
Miller LA, Santhanakrishnan A, Jones S, et al. Reconfiguration and the reduction of vortex-induced vibrations in broad leaves. Journal of Experimental Biology, 2012, 215:2716-2727 doi: 10.1242/jeb.064501
|
[8] |
Speck O. Field measurements of wind speed and reconfiguration in Arundo Donax (Poaceae) with estimates of drag forces. American Journal of Botany, 2003, 90(8):1253-1256 doi: 10.3732/ajb.90.8.1253
|
[9] |
Schouveiler L, Boudaoud A. The rolling up of sheets in a steady flow. Journal of Fluid Mechanics, 2006, 563:71-80 doi: 10.1017/S0022112006000851
|
[10] |
Alben S, Shelley M, Zhang J. Drag reduction through self-similar bending of a flexible body. Nature, 2002, 420:479-481 doi: 10.1038/nature01232
|
[11] |
Gosselin FP, de Langre E. Drag reduction by reconfiguration of a poroelastic system. Journal of Fluids and Structures, 2011, 27(7): 1111-1123 doi: 10.1016/j.jfluidstructs.2011.05.007
|
[12] |
Shelley MJ, Zhang J. Flapping and bending bodies interacting with fluid flows. Annual Review of Fluid Mechanics, 2011, 43:449-465 doi: 10.1146/annurev-fluid-121108-145456
|
[13] |
Albayrak I, Nikora V, Miler O, et al. Flow-plant interactions at leaf, stem and shoot scales:drag, turbulence, and biomechanics. Aquatic Science, 2014, 76:269-294 doi: 10.1007/s00027-013-0335-2
|
[14] |
Taneda S. Waving motions of flags. Journal of the Physical Society of Japan, 1968, 24:392-401 doi: 10.1143/JPSJ.24.392
|
[15] |
Posada JM, Lechowicz MZ, Kaoru Kitajima K. Optimal photosynthetic use of light by tropical tree rows achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 2009, 103:795-805 https://www.researchgate.net/publication/23798136_Optimal_photosynthetic_use_of_light_by_tropical_tree_crowns_achieved_by_adjustment_of_individual_leaf_angles_and_nitrogen_content
|
[16] |
Pisek J, Ryu Y, Alikas K. Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies. Trees, 2011, 25:919-924 doi: 10.1007/s00468-011-0566-6
|
[17] |
McNeil BE, Pisek J, Lepisk H, et al. Measuring leaf angle distribution in broadleaf canopies using UAVs. Agricultural and Forest Meteorology, 2016, 218-219:204-208 doi: 10.1016/j.agrformet.2015.12.058
|
[18] |
Hernandez LF. Leaf angle and light interception in sunflower (Helianthus annuus L.). Role of the petiole's mechanical and anatomical properties. Phyton-International Journal of Experimental Botany, 2010, 79:109-115 http://www.oalib.com/paper/985374
|
[19] |
张富云, 赵燕.鹅掌楸属植物研究进展.云南农业大学学报, 2005, 20(5):697-701 http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200505021.htm
|
[20] |
王沁峰, 张晓平, 王乐林等.二球悬铃木展叶期叶片生长及3个生理指数的动态变化.植物资源与环境学报, 2009, 18(2):94-96 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY200902016.htm
Wang Qinfeng, Zhang Xiaoping, Wang Lelin, et al. Dynamic changes of leaf growth and three physiological indexes of Platanus acerifolia during leaf expansion stage. Journal of Plant Resources and Environment, 2009, 18(2):94-96(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZY200902016.htm
|
[21] |
曹利祥, 袁方, 石喜乐等.悬铃木早期萌芽及叶片生长的动态变化.北方园艺, 2011, 24:95-96 http://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201124034.htm
|
[22] |
Niinemets U, Fleck S. Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of liriodendron tulipifera. Oecologia, 2012, 132(1):21-33 doi: 10.1007/s00442-002-0902-z
|
[23] |
Niklas KJ. A mechanical perspective on foliage leaf form and function. New Phytologist, 1999, 143:19-31 doi: 10.1046/j.1469-8137.1999.00441.x
|
[24] |
Scholes RJ, Prost PGH, Tian Y. Canopy structure in savannas along a moisture gradienton Kalahari sands. Global Change Biology, 2004, 10:292-302 doi: 10.1046/j.1365-2486.2003.00703.x
|
[25] |
Shao CP, Chen YJ, Lin JZ. Wind induced deformation and vibration of a Platanus acerifolia leaf. Acta Mechnica Sinica, 2012, 28(3): 583-594 doi: 10.1007/s10409-012-0074-y
|
[26] |
Tadrist L, Julio K, Saudreau M, et al. Leaf flutter by torsional galloping:Experiments and model. Journal of Fluids and Structures, 2015, 56:1-10 doi: 10.1016/j.jfluidstructs.2015.04.001
|
[27] |
Roshko A. On the wake and drag of bluff bodies. Journal of Aeronautical Science, 1955, 22:124-132 doi: 10.2514/8.3286
|
[28] |
Williamson CHK, Govardhan R. Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004, 36(1):413-455 doi: 10.1146/annurev.fluid.36.050802.122128
|
[29] |
Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6):713-735 https://www.researchgate.net/publication/222951736_A_brief_review_of_recent_results_in_vortex-induced_vibrations
|
[30] |
Niklas KJ. The elastic moduli and mechanics of Populas tremuloides (Salicaceae) petioles in bending and torsion. American Journal of Botany, 1991, 78(7):989-996 doi: 10.2307/2445178
|
[1] | Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214 |
[2] | He Haonan, Yu Kaiping, Tang Hong, Li Jinze, Zhou Qiankun, Zhang Xiaolei. VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488. DOI: 10.6052/0459-1879-19-119 |
[3] | Yu Kejie, Shao Chuanping. WIND TUNNEL INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF PURPLE WISTERIA COMPOUND LEAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 245-262. DOI: 10.6052/0459-1879-18-140 |
[4] | Kang Houjun, Guo Tieding, Zhao Yueyu. REVIEW ON NONLINEAR VIBRATION AND MODELING OF LARGE SPAN CABLE-STAYED BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535. DOI: 10.6052/0459-1879-15-436 |
[5] | Xu Wei, Wang Lifeng, Jiang Jingnong. FINITE ELEMENT ANALYSIS OF STRAIN GRADIENT MIDDLE THICK PLATE MODEL ON THE VIBRATION OF GRAPHENE SHEETS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761. DOI: 10.6052/0459-1879-15-074 |
[6] | Yu Mengge, Zhang Jiye, Zhang Weihua. OPERATIONAL SAFETY RELIABILITY OF HIGH-SPEED TRAINS UNDER STOCHASTIC WINDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 483-492. DOI: 10.6052/0459-1879-12-324 |
[7] | Kong Yanping Yang Qian Jin-Xi Liu. Thickness-twist waves in the magneto-electro-elastic bi-material plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 423-429. DOI: 10.6052/0459-1879-2011-2-lxxb2009-605 |
[8] | Nan Bo, Xueying Deng, Yankui Wang. Smog visualization technique of asymmetric vortices on forebody at high wind speed[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 261-266. DOI: 10.6052/0459-1879-2007-2-2006-262 |
[9] | TURNING POINTS IN THIN SHELLS OF REVOLUTION VIBRATION WITH AXISYMMETRIC MODE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 574-578. DOI: 10.6052/0459-1879-1990-5-1995-986 |
1. |
武玉柱,许林云,张超,张爱琪,金晶. 风力作用下多角度梨树叶片的运动研究. 江苏农业科学. 2024(11): 205-215 .
![]() | |
2. |
郑义津,李正农,涂文戈,蒲鸥,黄斌,宫博. 树木对风沙流场影响的风洞试验研究. 自然灾害学报. 2020(06): 107-116 .
![]() | |
3. |
俞科杰,邵传平. 紫藤萝复叶气动特性的风洞实验研究. 力学学报. 2019(01): 245-262 .
![]() | |
4. |
张林. 用Matlab软件模拟树叶在风中的无序运动. 大学物理实验. 2019(01): 112-115 .
![]() | |
5. |
赵洪涛,邵传平. 无患子复叶气动特性研究. 中国计量大学学报. 2019(02): 144-149 .
![]() | |
6. |
龚梦,邵传平. 构树叶在风中的形态重构. 中国计量大学学报. 2018(01): 33-37+49 .
![]() | |
7. |
封伟建,邵传平. 银杏树叶的气动特性研究. 中国计量大学学报. 2017(04): 448-453 .
![]() |