EI、Scopus 收录
中文核心期刊
Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
Citation: Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089

LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS

  • Received Date: April 05, 2016
  • Revised Date: June 12, 2016
  • Bluff-body burners are widely used in combustion chambers of industrial equipment such as jet engines, gas-turbines and boilers. Safe operation and low pollutant emission in these equipment directly demands understanding and controlling of ignition process in bluff-body burners. In this paper, a large-eddy simulation based on steady flamelet/progress variable approach was applied in a turbulent non-premixed bluff-body flame and its ignition process. Simulating two cases including non-reacting bluff-body flow (NRBB) and Sydney methane/hydrogen flame (HM1E), we comprehensively compared statistical results with experimental measures and previous numerical investigation. Then, we presented an instantaneous ignition process and flame development in Sydney bluff-body burner. Finally, the ignition process was analysed and characterized in detail, and a four-step process of flame ignition was proposed:decaying of ignition source, ignition initiation, generating of ignition kernel, and ignition success, which was identified by variation of peak values of temperature, OH and CH2O mass fraction. In addition, the ignition kernel stayed at the stern of the outer vortex in the recirculation zone of the cold flow of the bluff-body burner.
  • 1 Masri AR, Bilger RW. Turbulent non-premixed flames of hydrocarbon fuels near extinction:mean structure from probe measurements. Symposium (International) on Combustion, 1988, 21(1):1511-1520
    2 Masri AR, Kelman JB, Dally BB. The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. Symposium (International) on Combustion, 1998, 27(1):1031-1038
    3 Dally BB, Masri AR, Barlow RS, et al. Instantaneous and mean compositional structure of bluff-body stabilized non-premixed flames. Combustion & Flame, 1998, 114(s 1-2):119-148
    4 Dally BB, Masri AR. Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory & Modeling, 2006, 2(2):193-219
    5 Raman V, Pitsch H. Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combustion & Flame, 2005, 142(4):329-347
    6 Kim SH, Pitsch H. Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Physics of Fluids, 2006, 18(18):3453-3475
    7 Pitsch H. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 2006, 38(6):466-478
    8 Kempf AM, Lindstedt RP, Janicka J. Large eddy simulation of a bluff-body stabilized non-premixed flame. Combustion & Flame, 2006, 144(12):170-189
    9 黄庆, 朱旻明, 叶桃红等. 钝体驻定湍流扩散火焰的数值研究-燃烧模型比较. 计算物理, 2010, 27(2):229-239(Huang Qing, Zhu Minming, Ye Taohong, et al. Numerical simulation of bluff-body stabilized turbulent non-premixed flame:a comparison of combustion models. Chinese Journal of Computational Physics, 2010, 27(2):229-239(in Chinese))
    10 Kempf AM, Geurts BJ, Oefelein JC. Error analysis of large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame. Combustion & Flame, 2011, 158(12):2408-2419
    11 Popov PP, Pope SB. Large eddy simulation/probability density function simulations of bluff-body stabilized flames. Combustion & Flame, 2014, 161(12):3100-3133
    12 Muradoglu M, Liu K, Pope SB. PDF modeling of a bluff-body stabilized turbulent flame. Combustion & Flame, 2003, 132(s 1-2):115-137
    13 张弛, 林宇震, 徐华胜等. 民用航空发动机低排放燃烧室技术发展现状及水平. 航空学报, 2014, 35(2):332-350(Zhang Chi, Lin Yuzhen, Xu Huasheng, et al. Development status and level of low emissions combustor technologies for civil aeroengine. Hangkong Xuebao/Acta Aeronautica Et Astronautica Sinica, 2014, 35(2):332-350 (in Chinese))
    14 Ahmed SF. Spark ignition of turbulent non-premixed flames.[PhD Thesis]. Cambrdge:University of Cambridge, 2007
    15 Mastorakos E. Ignition of turbulent non-premixed flames. Progress in Energy & Combustion Science, 2009, 35(1):57-97
    16 Triantafyllidis A, Mastorakos E, Eggels RLGM. Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combustion & Flame, 2009, 156(12):2328-2345
    17 Subramanian V, Domingo P, Vervisch L. Large eddy simulation of forced ignition of an annular bluff-body burner. Combustion & Flame, 2010, 157(3):579-601
    18 李明磊, 吴宁, 侯凌云等. 强湍流下点火及火焰传播机理研究进展. 实验流体力学, 2015(4):1-11(Li Minglei, Wu Ning, Hou Lingyun. et al. Research progress on ignition and flame propagation in highly turbulent flows. Journal of Experiments Fluid Mechanics, 2015, 29(4):1-11(in Chinese))
    19 Sjöholm J, Rosell J, Li B, et al. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proceedings of the Combustion Institute, 2013, 34(1):1475-1482
    20 Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy & Combustion Science, 1984, 10(3):319-339
    21 Pitsch H. FlameMaster v3.1:A C++ computer program for 0D combustion and 1D laminar flame calculations (1998). Available from http://www.stanford.edu/group/pitsch/
    22 Zhang J, He GW, Jin GD. An implicit relation between temperature and reaction rate in the SLFM. Theoretical & Applied Mechanics Letters, 2011, 1(1):47-49
    23 Pierce CD. Progress-variable approach for large-eddy simulation of turbulent combustion.[PhD Thesis]. Stanford:Stanford University, 2001
    24 Pierce CD, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 2004, 504(504):73-97
    25 Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model:1. A priori study and presumed PDF closure. Combustion & Flame, 2008, 155(s 1-2):70-89
    26 Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model:2. Application in LES of Sandia flames D and E. Combustion & Flame, 2008, 155(s 1-2):90-107
    27 Ihme M, Schmitt C, Pitsch H. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 2009, 32(1):1527-1535
    28 Ihme M, See YC. LES flamelet modeling of a three-stream MILD combustor:analysis of flame sensitivity to scalar inflow conditions. Proceedings of the Combustion Institute, 2010, 33(6):1309-1317
    29 Ihme M, Shunn L, Zhang J. Regularization of reaction progress variable for application to flamelet-based combustion models. Journal of Computational Physics, 2012, 231:7715-7721
    30 Ihme M, Zhang J, He GW, et al. Large eddy simulation of a jetin-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbulence & Combustion, 2012, 89(3):449-464
    31 Bowman CT, Hanson RK, Davidson DF, et al. GRI-Mech 2.11(1997). Available from http://www.me.berkeley.edu/grimech/
  • Related Articles

    [1]Guan Xuexue, Chen Jianqiao, Zheng Yaochen, Zhang Xiaosheng. A COMBINED PARTICLE FILTER METHOD FOR PREDICTING STRUCTURAL PERFORMANCE DEGRADATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 677-687. DOI: 10.6052/0459-1879-18-014
    [2]Statistics of conditionally filtered dissipation and diffusion in large eddy simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 433-437. DOI: 10.6052/0459-1879-2006-4-2004-500
    [3]THE DIGITAL FILTER METHOD OF EXTRACTING THE COHERENT STRUCTUREIN WALL TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 398-405. DOI: 10.6052/0459-1879-1995-4-1995-447
    [4]APPLICATION OF MOIRE INTERFEROMETRY TO TECHNOLOGICAL STRESS DISTRIBUTION MEASUREMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 485-491. DOI: 10.6052/0459-1879-1993-4-1995-669
    [5]DYNAMIC STRAIN ANALYSIS METHOD USING ONE-BEAM SHEARING MOIRE INTERFEROMETRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 479-484. DOI: 10.6052/0459-1879-1993-4-1995-668
    [6]MULTIPLICATION OF MOIRE INTERFEROMETRY FRINGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(2): 193-200. DOI: 10.6052/0459-1879-1993-2-1995-631
    [7]THREE-DIMENSIONAL DISPLACEMENT-FIELD MEASURED BY PARTIALLY COHERENT LIGHT MOIRE INTERFEROMETRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 735-741. DOI: 10.6052/0459-1879-1992-6-1995-797
    [8]MOIRE INTERFEROMETRY FOR MEASURING 3-D DISPLACEMENT FIELDS IN REAL TIME SIMUTANEOUSLY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 589-594. DOI: 10.6052/0459-1879-1991-5-1995-880
    [9]A STUDY ON ELECTRONIC SHEARING SPECKLE TECHNIQUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 725-731. DOI: 10.6052/0459-1879-1990-6-1995-1003

Catalog

    Article Metrics

    Article views (1265) PDF downloads (737) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return