Citation: | Cai Baochun, Jiang Huazhen, Wang Wenzhong, Li Zhengyang, Wang Baoan, Yang Bing, Ren Zhiyuan. INFLUENCE OF SURFACE ROUGHNESS ORIENTATIONS ON FRICTION COEFFICIENT OF WHEEL/RAIL SPECIMEN IN OIL LUBRICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1114-1125. DOI: 10.6052/0459-1879-16-080 |
1 Ohyama T. Traction and slip at higher rolling speeds:Some experiments under dry friction water lubrication. In:Kalousek J, ed. Contact Mechanics and Wear of Rail/Wheel Systems, Proceedings of the International Symposium Held at the University of British Columbia, Vancouver:University of Waterloo Press, 1983, 395-418
|
2 Ohyama T. Tribological studies on adhesion phenomena between wheel and rail at high speed. Wear, 1991, 144:263-75
|
3 杨国伟, 魏宇杰, 赵桂林等. 高速列车的关键力学问题. 力学进展, 2015, 45:201507(YANG Guowei, WEI Yujie, ZHAO Guilin et al. Research progress on the mechanics of high speed rails. Advances in Mechanics, 2015, 45:201507(in Chinese))
|
4 Zhu Y, Olofsson U, Anders S. Adhesion modeling in the wheel-rail contact under dry and lubricated conditions using measured 3D surfaces. Tribol Inter, 2013, 61:1-10
|
5 Chen H, Ban T, Ishida M, et al. Adhesion between rail/wheel under water lubricated contact. Wear, 2002, 253:75-81
|
6 Patir N, Cheng HS. Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication. J Lubri Technol Trans ASME, 1978, 100(1):12-17
|
7 Patir N, Cheng HS. Application of average flow model to lubrication between rough sliding Surfaces. J Lubri Technol Trans ASME, 1979, 101(2):220-230
|
8 Chen H, Ishida M, Nakahara T. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness. Wear 2005, 258:1209-1216
|
9 Chen H, Ban T, Ishida M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions. Wear, 2008, 265(9-10):1504-1511
|
10 Akbarzadeh S, Khonsari MM. Effect of surface pattern on Stribeck curve. Tribol Lett, 2010, 37(2):477-486
|
11 Akbarzadeh S, Khonsari MM. On the prediction of running in behavior in mixed-lubrication line contact. J Tribol Trans ASME, 2010, 132(3):032102
|
12 Moes H. Optimum similarity analysis with applications to elastohydrodynamic lubrication. Wear, 1992, 59(1):57-66
|
13 Je reys H. The draining of a vertical plate. Math Proc Cambri Philo Soci,1930, 26:204-5
|
14 Steen WM, Mazumder J. Laser Material Processing. 4th ed. London:Springer-Verlag, 2010
|
15 Iino Y, Shimoda K. Effect of overlap pass tempering on hardness and fatigue behaviour in laser heat-treatment of carbon-steel. J Mater Sci Lett, 1987, 6(10):1193-1194
|
16 Li ZY, Xing XH, Yang MJ, et al. Investigation on rolling sliding wear behaviour of wheel steel by laser dispersed treatment. Wear, 2014, 314(1-2):236-240
|
17 Hu YZ, Zhu D. A full numerical solution to the mixed lubrication in point contacts. J Tribol Trans ASME, 2000, 122(1):1-9
|
18 Zhu D. Effect of surface roughness on mixed EHD lubrication characteristics. Tribol Trans, 2003, 46(1):44-48
|
19 Zhu D, Hu YZ. Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts. Tribol Trans, 2001, 44:391-398
|
20 Ren N, Nanbu T, Yasuda Y. Micro textures in concentratedconformal-contact lubrication:Effect of distribution patterns. Tribol Lett, 2007, 28(3):275-85
|
21 Nanbu T, Ren N, Yasuda Y. Micro-textures in concentrated conformal-contact lubrication:Effects of texture bottom shape and surface relative motion. Tribol Lett, 2008, 29(3):241-252
|
22 Zhu D, Nanbu T, Ren N. Model-based virtual surface texturing for concentrated conformal-contact lubrication. P IMech Eng J J Eng Tribol, 2010, 224(J8):685-696
|
23 Zhu D, Hu YZ. A Computer program for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness. Tribol Trans, 2001, 44:383-390
|
24 Bair S, Winer WO. A rheological model for elastohydro-dynamic contacts based on primary laboratory data. J Lubri Tech, 1979, 101(3):258-264
|
25 Chen H, Ishida M, Namura A. Estimation of wheel/rail adhesion coefficient under wet condition with measured boundary friction coefficient and real contact area. Wear, 2011, 271(1-2):32-39
|
26 Wang WZ, Wang S, Shi FH, et al. Simulations and measurements of sliding friction between rough surfaces in point contacts:From EHL to boundary lubrication. J Tribol Trans ASME, 2007,129(3):495-501
|
27 Zhu D, Wang Q. Effect of roughness orientation on the elastohydrodynamic lubrication film Thickness. J Tribol Trans ASME, 2013, 135(3):031501
|
28 Yang P,Wen S. A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. J Tribol Trans ASME, 1990, 112(4):631-336
|
29 Hamrock BJ, Schmid SR, Jacobson BO. Fundamentals of Fluid Film Lubrication. New York:Marcel Dekker, 2004
|
30 Nanbu T, Yasuda Y, Ushijima K, et al. Increase of traction coefficient due to surface microtexture. Tribol Lett, 2008, 29(2):105-118
|
[1] | Zhu Tao, Wu Jiaxin, Wang Xiaorui, Xiao Shoune, Yang Guangwu, Yang Bing. TIME DOMAIN IDENTIFICATION AND COMPARISON OF VERTICAL WHEEL-RAIL FORCE OF RAIL VEHICLES AND ITS MACHINE LEARNING CORRECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 247-257. DOI: 10.6052/0459-1879-23-377 |
[2] | Xie Bo, Chen Shiqian, Xu Mingkun, Yang Yunfan, Wang Kaiyun. POLYGONAL WEAR IDENTIFICATION OF WHEELS BASED ON OPTIMIZED MULTIPLE KERNEL EXTREME LEARNING MACHINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1797-1806. DOI: 10.6052/0459-1879-22-083 |
[3] | Wang Yishu, Shen Chaomin, Liu Sihong, Chen Jingtao. SHEAR-INDUCED ANISOTROPY ANALYSIS OF CONTACT NETWORKS INCORPORATING PARTICLE ROLLING RESISTANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1634-1646. DOI: 10.6052/0459-1879-21-090 |
[4] | Fu Peilin, Ding Li, Zhao Jizhong, Zhang Xu, Kan Qianhua, Wang Ping. FRICTIONAL TEMPERATURE ANALYSIS OF TWO-DIMENSIONAL ELASTO-PLASTIC WHEEL-RAIL SLIDING CONTACT WITH TEMPERATURE-DEPENDENT MATERIAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1245-1254. DOI: 10.6052/0459-1879-20-122 |
[5] | Zhou Yusheng, Wen Xiangrong, Wang Zaihua. ON THE NONHOLONOMIC CONSTRAINTS AND MOTION CONTROL OF WHEELED MOBILE STRUCTURES1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1143-1156. DOI: 10.6052/0459-1879-19-257 |
[6] | Jiang Huazhen, Wang Baoan, Li Zhengyang, Cai Baochun, Yang Bing, Ren Zhiyuan. INFLUENCE OF MACROSCOPIC TOPOGRAPHY ORIENTATIONS OF WHEELS ON ADHESION COEFFICIENT OF HIGH SPEED WHEEL/RAIL UNDER WATER LUBRICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 157-166. DOI: 10.6052/0459-1879-17-129 |
[7] | Zhao Ganglian, Jiang Yi, Chen Yujun, Dong Xiaotong. COMPUTATIONAL METHOD FOR DYNAMICS SIMULATION OF PAYLOAD SEPARATION FROM SATELLITE WITH RAIL CLEARANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 948-956. DOI: 10.6052/0459-1879-13-193 |
[8] | Effect of lateral undulatory support stiffness of rail on initiation and evolution of rail corrugation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 737-749. DOI: 10.6052/0459-1879-2005-6-2004-153 |
[9] | 混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500 |
[10] | STUDY ON ELASTOHYDRODYNAMIC LUBRICATION PROBLEMS WITH REAL ROUGH SURFACES IN LINE AND POINT CONTACTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 302-308. DOI: 10.6052/0459-1879-1993-3-1995-645 |
1. |
范童柏,任尊松. 轮装制动盘螺栓载荷测试及有限元分析. 振动工程学报. 2024(11): 1950-1958 .
![]() | |
2. |
沈明学,容康杰,熊光耀,朱旻昊. 第三体介质诱导轮轨间低黏着行为研究进展. 材料导报. 2021(13): 13160-13167 .
![]() | |
3. |
郭帅,赵相吉,何成刚,刘启跃,郭俊,王文健. 水介质下打磨磨痕对钢轨疲劳损伤的影响. 中国机械工程. 2019(08): 889-895 .
![]() | |
4. |
蒋华臻,王宝安,王晓明,马震,高欢,候静宇,任志远,李正阳. 激光毛化形貌对高速轮轨冰润滑黏着系数的影响. 应用激光. 2019(04): 652-659 .
![]() | |
5. |
蒋华臻,王保安,李正阳,蔡宝春,杨兵,任志远. 车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响. 力学学报. 2018(01): 157-166 .
![]() | |
6. |
李国斌,邝卫华. 轮轨接触磨损与裂纹产生机制的有限元模拟. 湖南有色金属. 2017(03): 56-60 .
![]() |