EI、Scopus 收录
中文核心期刊
Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452
Citation: Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452

EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY

  • Received Date: December 22, 2015
  • Revised Date: April 27, 2016
  • Methane adsorption in shale is the result of gas-liquid-solid interaction when considering water saturation in actual condition. And the moisture (water saturation) which significantly influences methane adsorption capacity will likely make shale gas resources misestimated. In this paper, we analyze the interaction characteristics between methane, water film and clay base on adsorption theory, and results reveal that:(1) methane adsorption on clay (dry) could be described by gas-solid interface Langmuir adsorption equation; (2) methane adsorption on water film could be described by gas-liquid interface Gibbs adsorption equation; (3) gas-liquid-solid interaction could be described by ‘gas-solid’ and ‘gas-liquid’ integrated equation. Meanwhile, we find that water saturation distribution is significantly effected by pore size, and micropores could be filled with water in certain condition while macropore only bound by water film. Therefore, the influence of moisture on methane adsorption is mainly for two aspects:(1) micropores which blocked by water are invalid for methane adsorption; (2) macropores bounded by water film change the interaction characteristics for methane adsorption (from gas-solid interaction to the gas-liquid interaction), and the overall effect could decrease the adsorption capacity by 90% in our study. Our present work reveals mechanism of moisture effect on the shale absorption capacity and lays the foundations of evaluating the adsorbed gas in shale gas reservoir more accurately.
  • 1 Curtis JB. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938
    2 Lu XC, Li FC, Watson AT. Adsorption measurements in Devonian shales. Fuel, 1995, 74(4):599-603
    3 樊冬艳, 姚军, 孙海等. 考虑多重运移机制耦合页岩气藏压裂水平井数值模拟. 力学学报, 2015, 47(6):906-915(Fan Dongyan, Yao Jun, Sun Hai, et al. Numerical simulation of multi-fractured horizontal well in shale gas reservoir considering multiple gas transport mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):906-915(in Chinese))
    4 吴克柳, 李相方, 陈掌星等. 页岩气和致密砂岩气藏微裂缝气体传输特性. 力学学报, 2015, 47(6):955-964(Wu Keliu, Li Xiangfang, Chen Zhangxing, et al. Gas transport behavior through micro fractures of shale and tight gas reservoirs. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):955-964(in Chinese))
    5 姚同玉, 黄延章, 李继山. 页岩气在超低渗介质中的渗流行为. 力学学报, 2012, 44(6):990-995(Yao Tongyu, Huang Yanzhang, Li Jishan. Flow regim for shale gas in extra low permeability porous media. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):990-995(in Chinese))
    6 郭为, 胡志明, 左罗等. 页岩基质解吸-扩散-渗流耦合实验及数学模型. 力学学报, 2015, 47(6):916-922(Guo Wei, Hu Zhiming, Zuo Luo, et al. Gas desorption-diffusion-seepage coupled experiment of shale matrix and mathematic model. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):916-922(in Chinese))
    7 李相方, 蒲云超, 孙长宇等. 煤层气与页岩气吸附/解吸理论再认识. 石油学报, 2014,(6):1113-1129(Li Xiangfang, Pu Yunchao, Sun Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir. Acta Petrolei Sinica, 2014,(6):1113-1129(in Chinese))
    8 Chareonsuppanimit P, Mohammad SA, Robinson Jr RL, et al. Highpressure adsorption of gases on shales:Measurements and modeling. International Journal of Coal Geology, 2012, 95:34-46
    9 Zhang T, Ellis GS, Ruppel SC, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 2012, 47:120-131
    10 Gasparik M, Ghanizadeh A, Bertier P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands. Energy & Fuels, 2012, 26(8):4995-5004
    11 郭为, 熊伟, 高树生等. 温度对页岩等温吸附/解吸特征影响. 石油勘探与开发, 2013, 40(4):481-485(Guo Wei, Xiong Wei, Gao Shusheng, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 2013, 40(4):481-485(in Chinese))
    12 ASTM D1412-07. Standard test method for equilibrium moisture of coal at 96 to 97 percent relative humidity and 30℃. 2010
    13 Ross DJK, Bustin MR. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6):916-927
    14 Gasparika M, Bertierb P, Gensterbluma Y, et al. Geological controls on themethane storage capacity in organic-rich shales. International Journal of Coal Geology, 2014, 123:34-51
    15 方朝合, 黄志龙, 王巧智等. 富含气页岩储层超低含水饱和度成因及意义. 天然气地球科学, 2013, 25(3):471-476(Fang Chaohe, Huang Zhilong, Wang Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir. Natural Gas Geoscience, 2014, 25(3):471-476(in Chinese))
    16 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标. 天然气工业, 2013, 33(7):140-144(Liu Honglin, Wang Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China. Natural Gas Industry, 2013, 33(7):140-144(in Chinese))
    17 Haghighi M, Ahmad M. Water saturation evaluation of murteree and roseneath shale gas reservoirs, cooper basin, australia using wire-line logs, focused ion beam milling and scanning electron microscopy. SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 2013
    18 Curtis ME, Ambrose RJ, Sondergeld CH. Structural characterization of gas shales on the micro-and nano-scales. Canadian Unconventional Resources and International Petroleum Conference, 2010
    19 Odusina EO, Sondergeld CH, Rai CS. NMR study of shale wettability. Presented at the Canadian Unconventional Resources Conference, Alberta, Canada, 15-17 November. SPE-147371-MS. 2011
    20 王平全, 陈地奎. 用热失重法确定水合黏土水分含量及存在形式. 西南石油学院学报, 2006, (1):52-55(Wang Pingquan, Chen Dikui. The determination of water content and bound water type on hydro-clay surface by thermal-weightlessness. Journal of Southwest Petroleum Institute, 2006, (1):52-55(in Chinese))
    21 张雪芬, 陆现彩, 张林晔等. 页岩气的赋存形式研究及其石油地质意义. 地球科学进展,2010, (6):597-604(Zhang Xuefen, Lu Xiancai, Zhang Linye, et al. Occurrences of shale gas and their petroleum geological significance. Advances in Earth Science, 2010, (6):597-604(in Chinese))
    22 Boyer C, Kieschnick J, Suarez-Rivera R, et al. Producing gas from its source. Autumn, 2006
    23 Spears RW, Dudus D, Foulds A, et al. Shale gas core analysis:strategies for normalizing between laboratories and a clear need for standard materials. SPWLA 52nd Annual Logging Symposium, 2011
    24 Korb JP, Nicot B, Louis-Joseph A, et al. Dynamics and wettability of oil and water in oil shales. J Phys Chem C, 2014, 118(40):23212-23218
    25 Aylmore LAG, Quirk JP. The micropore size distribution of clay mineral systems. J Soil Sci, 1967, 18:1-17
    26 Curtis ME, Ambrose RJ, Sondergeld CH, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale. North American Unconventional Gas Conference and Exhibition, 2011
    27 Sondergeld CH, Ambrose RJ, Rai CS, et al. Micro-structural studies of gas shales. SPE Unconventional Gas Conference, 2010
    28 Aringhieri R. Nanoporosity characteristics of some natural clay minerals and soils. Clays and Clay Minerals, 2004, 52(6):700-704
    29 吉利明, 邱军利, 夏燕青等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性. 石油学报, 2012, 33(2):249-256(Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256(in Chinese))
    30 Chalmers GR, Bustin MR. The effects and distribution of moisture in gas shale reservoir systems. AAPG Annual Convention and Exhibition, 2010
    31 Mahadevan J, Sharma MM, Yortsos YC. Evaporative cleanup of water blocks in gas wells. SPE Journal, 2007, 12(2):209-216
    32 姚泾利, 王怀厂, 张辉等. 鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理义. 天然气工业, 2014, 34(1):37-43(Yao Jingli, Wang Huaichang, Zhang Hui, et al. The formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultralow water saturation in Eastern Ordos Basin. Natural Gas Industry, 2014, 34(1):37-43(in Chinese))
    33 张浩, 康毅力, 陈一健等. 致密砂岩气藏超低含水饱和度形成地质过程及实验模拟研究. 天然气地球科学, 2005, 16(2):186-189(Zhang Hao, Kang Yili, Chen Yijian, et al. The study of geology course and experiment simulation for forming ultra-low water saturation in tight sandstones gas reservoirs. Natural Gas Geoscience, 2005, 16(2):186-189(in Chinese))
    34 Zuluaga E, Muñoz NI, Obando GA. An Experimental study to evaluate water vaporisation and formation damage caused by dry gas flow through porous media. International Symposium on Oilfield Scale, 2001
    35 Tharwat T. Encyclopedia of Colloid and Interface Science. Springer, 2013
    36 李靖, 李相方, 李莹莹等. 储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型. 力学学报, 2015, 47(6):932-944(Li Jing, Li Xiangfang, Li Yingying, et al. Model for gas transport in nanopores of shale and tight formation under reservoir condition. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):932-944(in Chinese))
    37 Adamson AW. Physical Chemistry of Surfaces, 5th ed, John Wiley, New York, 1990
    38 恽正中. 表面与界面物理. 中国电子科技大学出版社,1993
    39 Starov VM, Velarde MG, Radke CJ.Wetting and Spreading Dynamics. CRC Press, 2007
    40 Takahashi S, Kovscek AR. Wettability estimation of lowpermeability, siliceous shale using surface forces. Journal of Petroleum Science and Engineering, 2010, 75(1):33-43
    41 Churaev NV. Contact angles and surface forces. Advances in Colloid and Interface Science, 1995, 58(2):87-118
    42 Tuller M, Or D, Dudley LM. Adsorption and capillary condensation in porous media:Liquid retention and interfacial configurations in angular pores. Water Resources Research, 1999, 35(7):1949-1964
    43 Churaev NV, Adolphs SG. Isotherms of capillary condensation influencedby formation of adsorption films. J Colloid Interface Sci, 2000, 221(2):246-253
    44 李靖, 李相方, 李莹莹等. 页岩黏土孔隙气-液-固三相作用下甲烷吸附模型. 煤炭学报, 2015, 40(7):1580-1587(Li Jing, Li Xiangfang, Li Yingying, et al. Methane adsorption model for clay with gas-liquid-solid interaction. Journal of China Coal Society, 2015, 40(7):1580-1587(in Chinese))
    45 Langmuir I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Journal of the Franklin Institute, 1917, 183(1):101-102
    46 Jin Z, Firoozabadi A. Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilibria, 2014, 382:10-20
    47 近藤精一(日), 石川达雄(日), 安部郁夫(日). 吸附科学. 北京:化学工业出版社, 2006
    48 Ong SK, Lion LW. Mechanisms for trichloroethylene vapor sorption onto soil minerals. Journal of Environmental Quality, 1991, 20(1):180-188
    49 ASTM E104-2002, 2007. Standard practice for maintaining constant relative humidity by means of aqueous solutions
    50 Drits VA, McCarty DK. The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments. Clays & Clay Minerals, 2007, 55(1):45-58
  • Related Articles

    [1]Xu Bofeng, Zhu Zixuan, Dai Chengjun, Cai Xin, Wang Tongguang, Zhao Zhenzhou. INFLUENCE OF WIND SHEAR ON AERODYNAMIC CHARACTERISTICS AND WAKE SHAPE OF WIND TURBINE BLADES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 362-372. DOI: 10.6052/0459-1879-20-289
    [2]Xie Chenyu, Yuan Zelong, Wang Jianchun, Wan Minping, Chen Shiyi. ARTIFICIAL NEURAL NETWORK-BASED SUBGRID-SCALE MODELS FOR LARGE-EDDY SIMULATION OF TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 1-16. DOI: 10.6052/0459-1879-20-420
    [3]Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214
    [4]Xu Bofeng, Liu Bingbing, Feng Junheng, Zuo Lu. INFLUENCE OF VORTEX CORE SIZE ON AERODYNAMIC CALCULATION OF WIND TURBINE IN FREE VORTEX WAKE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1530-1537. DOI: 10.6052/0459-1879-18-440
    [5]Beiji Shi, Guowei He, Shizhao Wang. LARGE-EDDY SIMULATION OF FLOWS WITH COMPLEX GEOMETRIES BY USING THE SLIP-WALL MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 754-766. DOI: 10.6052/0459-1879-19-033
    [6]Wu Ting, Shi Beiji, Wang Shizhao, Zhang Xing, He Guowei. WALL-MODEL FOR LARGE-EDDY SIMULATION AND ITS APPLICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 453-466. DOI: 10.6052/0459-1879-18-071
    [7]Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
    [8]Han Xu, He Guojian, Fang Hongwei, Fu Songy. LARGE-EDDY SIMULATION AND DOUBLE-AVERAGING ANALYSIS OF OPEN-CHANNEL FLOW OVER A PERMEABLE BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 713-721. DOI: 10.6052/0459-1879-14-382
    [9]Zhou Lei, Xie Maozhao, Luo Kaihong, Shuai Shijin, Jia Ming. LARGE EDDY SIMULATION FOR INTERNAL COMBUSTION ENGINES: PROGRESS AND PROSPECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 467-482. DOI: 10.6052/0459-1879-13-091

Catalog

    Article Metrics

    Article views (924) PDF downloads (663) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return