EI、Scopus 收录
中文核心期刊
Wang Bo, Zhou Yan, Zhou Yiming. MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993. DOI: 10.6052/0459-1879-15-441
Citation: Wang Bo, Zhou Yan, Zhou Yiming. MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993. DOI: 10.6052/0459-1879-15-441

MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION

  • Received Date: December 09, 2015
  • Revised Date: March 20, 2015
  • Topology optimization can provide creative conceptual designs for structure of industry product in the preliminary design stage. However, the traditional topology optimization approaches focus on searching for one optimal solution which may be invalid due to the refinements of models or the additional design requirements. This paper presents the multiple designs approach (MDA) to get two or more diverse topology designs simultaneously in conceptual design, which can reduce the risk of lacking full knowledge of the designs by providing multiple designs. This paper gives general optimization model formulations for MDA in which weighting function is used as the objective function to evaluate the performances of multiple solutions and diversity measure is used as constraint to make difference between configurations. A kind of diversity measure is presented in the paper and its physical significance and features are also discussed at the same time. This paper solves two compliance minimization problems based on variable density method as examples and gives detailed optimization model formulations and sensitivity analysis. The parameters of objective function and constraints in MDA and latent performances of different solutions are also discussed in the examples. The results show that MDA could propose multiple diverse designs for detailed design stage.
  • 1 Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224
    2 Bendsoe MP. Optimization of Structural Topology, Shape, and Material. Springer, 1995
    3 Zhou M, Rozvany GIN. The coc algorithm, part ii: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336
    4 Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer Science & Business Media, 2003
    5 Olhoff N, Bendsoe MP, Rasmussen J. On cad-integrated structural topology and design optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 259-279
    6 Tang PS, Chang KH. Integration of topology and shape optimization for design of structural components. Structural and Multidisciplinary Optimization, 2001, 22(1): 65-82
    7 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计. 力学学报, 2012, 44(3): 528-536(Niu Fei, Wang Bo, Cheng Gengdong. Optimum topology design of structural part for concentration force transmission. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536(in Chinese))
    8 王劭伯, 吕勇哉. 多目标动态规划及其在过程优化中的应用. 系统工程理论与实践, 1986(04): 19-25 (Wang Shaobo, Lü Yongzai. Multi-objective dynamic programming and application in process optimization. Systems Engineering-theory & Practice, 1986(04): 19-25 (in Chinese))
    9 Grandhi RV, Bharatram G, Venkayya VB. Multiobjective optimization of large-scale structures. AIAA Journal, 2012, 31(7): 1329-1337
    10 张连文, 夏人伟. Pareto 最优解及其优化算法. 北京航空航天大学学报, 1997, 23(2): 206-211 (Zhang Lianwen, Xia Renwei. Pareto optimal solution and optimization method. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(2): 206-211(in Chinese))
    11 Chen TY, Wu SC. Multiobjective optimal topology design of structures. Computational Mechanics, 1998, 21(6): 483-492
    12 李兆坤, 张宪民, 陈金英等. 柔顺机构几何非线性多目标拓扑优化设计. 机械强度, 2011, 33(4): 548-553 (Li Zhaokun, Zhang Xiaomin, Chen Jinying, et al. Multiobjective topology optimization of compliant mechanisms with geometrical nonlinearity. Journal of Mechanical Strength, 2011, 33(4):548-553(in Chinese))
    13 程耿东, 张东旭. 受应力约束的平面弹性体的拓扑优化. 大连理工大学学报, 1995, 35(1): 1-9(Cheng Gengdong, Zhang Dongxu. Topological optimization of plane elastic continuum with stress constraints. Journal of Dalian University of Technology, 1995, 35(1): 1-9(in Chinese))
    14 隋允康, 叶红玲, 杜家政. 结构拓扑优化的发展及其模型转化为独立层次的迫切性. 工程力学, 2005, 22(S1): 107-118 (Sui Yunkang, Ye Hongling, Du Jiazheng. Development of structural topological optimization and imminency of its model transformation into independent level. Engineering Mechanics, 2005, 22(S1): 107-118(in Chinese))
    15 Pedersen NL. Maximization of eigenvalues using topology optimization. Structural & Multidisciplinary Optimization, 2000, 20(1): 2-11
    16 Hoch SJ, Schkade DA. A psychological approach to decision support systems. Management Science, 1996, 42(1): 51-64
    17 Laguna M, Gort′azar F, Gallego M, et al. A black-box scatter search for optimization problems with integer variables. Journal of Global Optimization, 2014, 58(3): 497-516
    18 Sharda R, Barr SH, Mcdonnell JC. Decision support system effectiveness: a review and empirical test. Management Science, 1988, 34(2): 139-159
    19 Williams HP. Model Building in Mathematical Programming, Volume 4. Wiley, 1999
    20 Takriti S, Birge JR, Long E. A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems, 1996, 11(3): 1497-1508
    21 Villanueva D, Le Riche R, Picard G, et al. Dynamic design space partitioning for optimization of an integrated thermal protection system. ln: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, USA. 2013
    22 Zhou YM, Haftka RT, Cheng GD. Balancing diversity and performance in global optimization. Structural & Multidisciplinary Optimization, 2016
    23 Sigmund O, Maute K. Topology optimization approaches A comparative review. Structural And Multidisciplinary Optimization, 2013, 48(6): 1031-1055
    24 Giachetti A. Matching techniques to compute image motion. Image and Vision Computing, 2000, 18(3): 247-260
    25 王勖成. 有限单元法. 清华大学出版社. 2003 (Wang Xucheng. Finite Element Method. Tsinghua University Press, 2003 (in Chinese))
    26 Cook RD, Malkus DS, Plesha ME, et al. Concepts and Applications of Finite Element Analysis, 4th Edition. Wiley, 2001
  • Related Articles

    [1]Gao Shuyue, Liu Yang, Liu Shutian. TOPOLOGY OPTIMIZATION-BASED METHOD FOR LIGHTWEIGHT AND THIN DESIGN OF ADDITIVE MANUFACTURING SILICON CARBIDE PRIMARY MIRROR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(7): 1638-1645. DOI: 10.6052/0459-1879-25-102
    [2]Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187
    [3]Huang Kaixuan, Ding Zhe, Zhang Yan, Li Xiaobai. TOPOLOGICAL OPTIMIZATION DESIGN METHOD OF LAYER-WISE GRADED LATTICE STRUCTURES WITH HIGH LOAD-BEARING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 433-444. DOI: 10.6052/0459-1879-22-363
    [4]Li Lin, Zhang Xuebin, Liu Tao, Zhang Jun. TOPOLOGY DESIGN AND CHARACTERIZATION OF BROADBAND WAVE-SPLITTING METAGRATINGS FOR FLEXURAL WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 148-158. DOI: 10.6052/0459-1879-22-373
    [5]Chen Wenjiong, Liu Shutian, Zhang Yongcun. OPTIMIZATION DESIGN OF CONDUCTIVE PATHWAYS FOR COOLING A HEAT GENERATING BODY WITH HIGH CONDUCTIVE INSERTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 406-412. DOI: 10.6052/0459-1879-15-270
    [6]Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
    [7]Ye Hongling, Shen Jingxian, Sui Yunkang. DYNAMIC TOLOGICAL OPTIMAL DESIGN OF THREE-DIMENSIONAL CONTINUUM STRUCTURES WITH FREQUENCIES CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037-1045. DOI: 10.6052/0459-1879-12-069
    [8]Luo Yangjun Kang Zhan Deng Zichen. Robust topology optimization design of structures with multiple load cases[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 227-234. DOI: 10.6052/0459-1879-2011-1-lxxb2010-147
    [9]Jianhua Rong, Qiang Zhang, Sen Ge, Rangke Mu. A new structural topological optimization method based on design space adjustments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 256-267. DOI: 10.6052/0459-1879-2010-2-2008-766
    [10]Shiping Sun, Weihong Zhang. Topology optimal design of thermo-elastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 878-887. DOI: 10.6052/0459-1879-2009-6-2007-439
  • Cited by

    Periodical cited type(6)

    1. 林心玥,赵文畅,操小龙,陈海波. 基于混合有限元-边界元的声振系统多材料拓扑优化方法研究. 振动与冲击. 2024(22): 106-117 .
    2. 王冠,张骞,寇琳媛,刘志文,李世康. 基于混合元胞自动机算法的连续体结构非线性拓扑优化. 中国机械工程. 2020(18): 2161-2173 .
    3. 吕勤良,王发展,郑建校,武小兰. 基于Logistic函数改进插值模型拓扑优化. 机械设计与研究. 2019(02): 6-11 .
    4. 俞燎宏,荣见华,唐承铁,李方义. 基于可行域调整的多相材料结构拓扑优化设计. 航空学报. 2018(09): 117-133 .
    5. 朱世新,张立元,李松雪,张勃洋,张清东. 数字状张拉整体结构的构型设计与力学性能模拟. 力学学报. 2018(04): 798-809 . 本站查看
    6. 李笑,李明. 折纸及其折痕设计研究综述. 力学学报. 2018(03): 467-476 . 本站查看

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1133) PDF downloads (569) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return