EI、Scopus 收录
中文核心期刊
Kang Houjun, Guo Tieding, Zhao Yueyu. REVIEW ON NONLINEAR VIBRATION AND MODELING OF LARGE SPAN CABLE-STAYED BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535. doi: 10.6052/0459-1879-15-436
Citation: Kang Houjun, Guo Tieding, Zhao Yueyu. REVIEW ON NONLINEAR VIBRATION AND MODELING OF LARGE SPAN CABLE-STAYED BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535. doi: 10.6052/0459-1879-15-436

REVIEW ON NONLINEAR VIBRATION AND MODELING OF LARGE SPAN CABLE-STAYED BRIDGE

doi: 10.6052/0459-1879-15-436
  • Received Date: 2015-12-03
  • Rev Recd Date: 2016-01-18
  • Publish Date: 2016-05-18
  • As a hot research topic, the nonlinear dynamics of cable-stayed bridge has been highlighted in the field of mechanics, structure and bridge. With the development of new materials, such as CFRP cable, and new construction technology, the main span of cable-stayed bridge has been enlarged, which make this kind of bridge more competitive in bridge engineering. However, the increase of its span and the application of new materials make the bridge structure become lighter and more flexible, so that the nonlinear vibration of the structure becomes more prominent than ever, which may endanger the safety of the bridge. Based on our research of the nonlinear dynamics of cable-stayed bridge in recent years, the research progress in recent 10 years on the nonlinear dynamics and modeling of large span cable-stayed bridge is reviewed in detail. The nonlinear dynamic models, theories and modeling and solving methods for cable, beam, cable-beam and cable-stayed bridges are discussed. The results show that the cable stayed bridge has rich nonlinear dynamic behavior due to the coupling problem of the multi flexible cable, the large span beam, and the complexity of the environmental load. At the same time, due to the bottleneck problem of high dimensional nonlinear system, the study on the nonlinear dynamic behavior of the whole cable-stayed bridge becomes very complicated. Finally, based on the future development trend of cable-stayed bridge, some new ideas on nonlinear dynamics of cable-stayed bridge is proposed and future research directions are discussed.

     

  • loading
  • 1 埃尔莎·德·萨·卡埃塔诺. 斜拉桥的拉索振动与控制. 张德祥译. 北京:中国建筑工业出版社, 2012 (Caetano ETS. Cable Vibration in Cable-stayed Bridges. Zhang Dexiang, transl. Beijing: China Architecture & Building Press, 2012 (in Chinese))
    2 王修勇, 陈政清, 倪一清. 斜拉桥拉索风雨振观测及其控制. 土木工程学报, 2003, 36(6): 53-59 (Wang Xiuyong, Chen Zhengqing, Ni Yiqing. Wind-rain induced vibration and its control on stay cables of cable-stayed bridges. China Civil Engineering Journal, 2003, 36(6):53-59 (in Chinese))
    3 Sofi A. Nonlinear in-plane vibrations of inclined cables carrying moving oscillators. Journal of Sound and Vibration, 2013, 332(7):1712-1724  
    4 Tzanov VV, Krauskopf B, Neild SA. Vibration dynamics of an inclined cable excited near its second natural frequency. International Journal of Bifurcation and Chaos, 2014, 24(09): 1430024  
    5 Lepidi M, Gattulli V. A parametric multi-body section model for modal interactions of cable-supported bridges. Journal of Sound and Vibration, 2014, 333(19): 4579-4596  
    6 Wei M, Xiao Y, Liu H, et al. Nonlinear responses of a cable-beam coupled system under parametric and external excitations. Archive of Applied Mechanics, 2014, 84(2): 173-185  
    7 Wang Z, Li T. Nonlinear dynamic analysis of parametrically excited space cable-beam structures due to thermal loads. Engineering Structures, 2015, 83: 50-61  
    8 夏禾, 张楠, 郭薇薇. 车桥耦合振动工程. 北京:科学出版社, 2014 (Xia He, Zhang Nan, Guo Weiwei. Coupling Vibration of Trainbridge System. Beijing: Science Press, 2014 (in Chinese))
    9 李永乐, 赵凯, 吴梦雪等. 斜独塔混合梁斜拉桥风-汽车-桥梁系统耦合振动研究. 中国公路学报, 2012, 25(1): 47-54 (Li Yongle, Zhao Kai, Wu Mengxue, et al. Study of coupling vibration of windvehicle- bridge system for inclined single pylon cable-stayed bridge with hybrid girder. China Journal of Highway and Transport, 2012,25(1): 47-54 (in Chinese))
    10 Irvine HM. Cable Structures. The MIT Press, 1981
    11 李国强,顾明,孙利民. 拉索振动、动力检测与振动控制理论. 北京: 科学出版社, 2014 (Li Guoqiang, Gu Ming, Sun Limin. Vibration, Dynamic Detection and Vibration Control Theory of Cable. Beijing: Science Press, 2014 (in Chinese))
    12 Rega G. Nonlinear vibrations of suspended cables-Part I: Modeling and analysis. Applied Mechanics Reviews, 2004, 57(6): 443-478  
    13 Rega G. Nonlinear vibrations of suspended cables-part II: deterministic phenomena. Applied Mechanics Reviews, 2004, 57(6): 479-514  
    14 吴晓, 黎大志, 罗佑新. 斜拉索非线性固有振动特性分析. 振动与冲击, 2003, 22(3): 37-39 (Wu Xiao, Li Dazhi, Luo Youxin. Nonlinear natural vibration character analysis of stay cables. Journal of Vibration and Shock, 2003, 22(3): 37-39 (in Chinese))
    15赵跃宇, 周海兵, 金波等. 弯曲刚度对斜拉索非线性固有频率的影响. 工程力学, 2008, 25(1): 196-202 (Zhao Yueyu, Zhou Haibing, Jin Bo, et al. Influence of bending rigidity on nonlinear natural frequency of inclined cable. Engineering Mechanics, 2008, 25(1):196-202 (in Chinese))
    16 Kang HJ, Zhao YY, Zhu HP. Linear and nonlinear dynamics of suspended cable considering bending sti ness. Journal of Vibration and Control, 2015, 21(8): 1487-1505  
    17 Lepidi M, Gattulli V. Static and dynamic response of elastic suspended cables with thermal e ects. International Journal of Solids and Structures, 2012, 49(9): 1103-1116  
    18 赵珧冰, 孙测世, 彭剑等. 不同初拉力拉索对温度变化的敏感性分析. 中南大学学报(自然科学版), 2014, 45(5): 1680-1685 (Zhao Yaobing, Sun Ceshi, Peng Jian, et al. Sensitivity analysis of di erent initial tension forces of suspended cable to temperature changes. Journal of Central South University (Science and Technology),2014, 45(5): 1680-1685 (in Chinese))
    19 蔡东升. CFRP 索长大跨斜拉桥结构非线性动力学行为研究.[博士论文]. 镇江:江苏大学, 2013 (Cai Dongsheng. Research on nonlinear structural dynamic behaviors of long span cable-stayed bridge with CFRP cables. [PhD Thesis]. Zhengjiang: Jiangsu University,2014 (in Chinese))
    20 李志江. 碳素纤维复合材料(CFRP) 斜拉索非线性振动特性和参数激励研究.[博士论文]. 武汉:华中科技大学, 2011 (Li Zhijiang. Study on nonlinear vibration properties and parametric excitations of CFRP stayed cables. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese))
    21 Wang LH, Zhao YY. Large amplitude motion mechanism and nonplanar vibration character of stay cables subject to the support motions. Journal of Sound and Vibration, 2009, 327(1-2): 121-133  
    22 孙测世, 王志搴, 赵珧冰等. 两端水平激励斜拉索面内非线性振动响应. 地震工程与工程振动, 2014, 34(6): 122-126(Sun Ceshi, Wang Zhiqian, Zhao Yaobing, et al. In-plane nonlinear vibrations of stayed cables under horizontal excitations. Earthquake Engineering and Engineering Dynamics, 2014, 34(6): 122-126 (in Chinese))
    23 康厚军, 赵跃宇, 杨相展. 弯斜拉桥中拉索的主共振研究. 工程力学, 2008, 25(11): 68-91 (Kang Houjun, Zhao Yueyu, Yang Xiangzhan. Research on primary resonance of cables in curved cablestayed bridge. Engineering Mechanics, 2008, 25(11): 68-91 (in Chinese))
    24 赵跃宇, 王涛, 康厚军. 斜拉索主参数共振的稳定性分析. 动力学与控制学报, 2008, 6(2): 112-117 (Zhao Yueyu, Wang Tao, Kang Houjun. Analysis of the stability of principal parametric resonance of stayed-cable. Journal of Dynamics and Control, 2008, 6(2): 112-117 (in Chinese))
    25 Ying ZG, Ni YQ, Ko JM. Parametrically excited instability of a cable under two support motions. International Journal of Structural Stability and Dynamics, 2006, 6(1): 43-58  
    26 Tzanov VV, Krauskopf B, Neild SA. Vibration dynamics of an inclined cable excited near its second natural frequency. International Journal of Bifurcation and Chaos, 2014, 24(9):1430024  
    27 彭剑, 赵珧冰, 孙测世等. 磁流变阻尼器- 斜拉索控制系统中的时滞效应. 工程力学, 2014, 31(4): 155-159 (Peng Jian, Zhao Yaobing, Sun Ceshi, et al. Time delay e ects in MR amper-stay cable control systems. Engineering Mechanics, 2014, 31(4): 155-159 (in Chinese))
    28 彭剑. 工程柔性结构振动控制中的时滞动力学研究.[博士论文]. 长沙:湖南大学, 2013 (Peng Jian. Time delay dynamics vibration control of flexible engineering structures. [PhD Thesis]. Changsha: Hunan University, 2013 (in Chinese))
    29 Gattulli V, Martinelli L, Perotti F, et al. Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Computer Methods in Applied Mechanics and Engineering,2004, 193(1): 69-85
    30 王信. 索- 梁组合结构的建模与非线性有限元分析. [硕士论文]. 长沙:湖南大学, 2009(Wang Xin. Modeling and nonlinear analysis of cable-beam by finite element method. [Master Thesis]. Changsha: Hunan University, 2009 (in Chinese))
    31 付英. 基础激励下桥梁斜拉索的非线性振动. 动力学与控制学报,2010, 8(1): 57-61 (Fu Ying. Nonlinear vibration of cables in cablestayed bridge under foundation excitation. Journal of Dynamics and Control, 2010, 8(1): 57-61 (in Chinese))
    32 Karoumi R. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Computer and Structures, 1999,71(4): 397-412  
    33 胡建华, 王连华, 赵跃宇. 索结构几何非线性分析的悬链线索单元法. 湖南大学学报:自然科学版, 2007, 34(11): 29-32 (Hu Jianhua, Wang Lianhua, Zhao Yueyu. A catenary cable element for the nonlinear analysis of cable structures. Journal of Hunan University (Natural Sciences), 2007, 34(11): 29-32(in Chinese))
    34 刘北辰. 工程计算力学理论与应用. 北京:机械工业出版社, 1994 (Liu Beichen. Theory and Application in Engineering Computational Mechanics. Beijing: China Machine Press, 1994 (in Chinese))
    35 Tang Jianmin, Shen Zuyan, Qian Ruojun. A nonlinear finite element method with five-node curved element for analysis of cable structures. In: Proceedings of IASS International Symposium, 1995, 2:929-935
    36 Vannemreddi S. Numerical modeling of stay cables and stay cable bridges. Northern Illinois University, 2010
    37 Nayfeh AH., Mook DT. Nonlinear Oscillations. JohnWiley & Sons,1979
    38 陈予恕. 非线性动力学中的现代分析方法. 北京: 科学出版社,2000 (Chen Yushu. Modern Analysis Methods in Nonlinear Dynamics. Beijing: Science Press, 2000 (in Chinese))
    39 胡海岩. 应用非线性动力学. 北京: 航空工业出版社,2000 (Hu Haiyan. Applied Nonlinear Dynamics. Beijing: Aviation Industry Press, 2000 (in Chinese))
    40 刘延柱, 陈立群. 非线性振动. 北京:高等教育出版社, 2001 (Liu Yanzhu, Chen Liqun. Nonlinear Vibration. Beijing: Higher Education Press, 2001 (in Chinese))
    41 王洪礼, 张琪昌, 郭树起等. 非线性动力学理论及其应用. 天津: 天津科学技术出版社, 2001 (Wang Hongli, Zhang Qichang, Guo Shuqi, et al. Nonlinear Dynamics Theory and its Application. Tianjing: Tianjin Science and Technology Press, 2001 (in Chinese))
    42 张伟, 胡海岩. 非线性动力学理论与应用的新进展. 北京: 科学出版社, 2009 (Zhang Wei, Hu Haiyan. Advances of Research on Theory and Applications of Nonlin-ear Dynamics. Beijing: Science Press, 2009 (in Chinese))
    43 高骏. 桥面激励下斜拉索的参数振动与减振研究. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2012 (Gao Jun. Parametric vibration of stayd cable subjected to deck excitation and vibration reduction. [Master Thesis]. Harbin: Harbin Institute of Technology, 2012 (in Chinese))
    44 康厚军, 赵跃宇. 索力对斜拉索动力特性的影响. 工程力学, 2010,27(6): 83-88 (Kang Houjun, Zhao Yueyu. E ects of initial tension ondynamic characteristics of stay cables. Engineering Mechanics,2010, 27(6): 83-88 (in Chinese))
    45 Kamel MM, Hamed YS. Nonlinear analysis of an elastic cable under harmonic excitation. Acta Mech, 2010, 214(3-4): 315-325  
    46 任爱娣, 张琪昌, 张良欣. 多尺度法的设解形式之探讨. 海军工程大学学报, 2006, 18(1): 11-14 (Ren Aidi, Zhang Qichang, Zhang Liangxin. Discussion of solutions supposed forms for method of multiple scales. Journal of Naval University of Engineering, 2006,18(1): 11-14 (in Chinese))
    47 Chen H, Xu Q. Bifurcations and chaos of an inclined cable. Nonlinear Dynamics, 2009, 57(1-2): 37-55  
    48 Zhao YY, Sun CS, Wang ZQ, et al. Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method. Structural Engineering and Mechanics, 2015, 50(4): 487-500
    49 Nayfeh SA, Nayfeh AH, Mook DT. Nonlinear response of a taut string to longitudinal and transverse end excitation. Journal of Vibration and Control, 1995, 1(3): 307-334  
    50 Hu J, Pai PF. Experimental study of resonant vibrations of suspended steel cables using a 3D motion analysis system. Journal of Engineering Mechanics, 2014, 138(6): 640-661
    51 Berlioz A, Lamarque CH. A non-linear model for the dynamics of an inclined cable. Journal of Sound and Vibration, 2005, 279(3):619-639
    52 Berlioz A, Lamarque CH. Nonlinear vibrations of an inclined cable. ASME Journal of Vibration and Acoustics, 2004, 127(4): 315-323
    53 Rega G, Srinil N, Alaggio R. Experimental and numerical studies of incl ined cables free and parametrically-forced vibrations. Journal of Theoretical and Applied Mechanics, 2008, 46(3): 621-640 第3 期康厚军等:大跨度斜拉桥非线性振动模型与理论研究进展533
    54 陈丕华, 王修勇, 陈政清等. 斜拉索面内参数振动的理论和试验研究. 振动与冲击, 2010, 29(2): 50-53(Chen Pihua,Wang Xiuyong, Chen Zhengqing, et al. Theoretical and experimental study on planar parametric oscillations in a stayed-cable. Journal of Vibration and Shock, 2010, 29(2): 50-53 (in Chinese))
    55 Gonzalez-Buelga A, Neild S, Wagg D, et al. Modal stability of inclined cables subjected to vertical support excitation. Journal of Sound and Vibration, 2008, 318(3): 565-579  
    56 Macdonald J, Dietz M, Neild S, et al. Generalised modal stability of inclined cables subjected to support excitations. Journal of Sound and Vibration, 2010, 329(21): 4515-4533  
    57 Xu YL, Yu Z. Non-linear vibration of cable-damper systems part II: application and verification. Journal of Sound and Vibration, 1999,225(3): 465-481  
    58 Gattulli V, Alaggio R, Potenza F. Analytical prediction and experimental validation for longitudinal control of cable oscillations. International Journal of Non-Linear Mechanics, 2008, 43(1): 36-52  
    59 Faravelli L, Fuggini C, Ubertini F. Experimental study on hybrid control of multimodal cable vibrations. Meccanica , 2011, 46(5):1073-1084  
    60 Jiang J, Li GQ, Lu Y. Vibration control of cables with damped flexible end restraint: Theoretical model and experimental verification. Journal of Sound and Vibration, 2013, 332(15): 3626-3645  
    61 Alvarado CR, Carrion VF, Sarinana TA. Vibration reduction performance of an active damping control system for a scaled system of a cable-stayed bridge. International Journal of Structural Stability and Dynamics, 2015, 15(5): 1450077  
    62 Ahmad J, Cheng SH. Analytical study on in-plane free vibration of a cable network with straight alignment rigid cross-ties. Journal of Vibration and Control, 2015, 21(7): 1299-1320  
    63 Huang HW, Liu JY, Sun LM. Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper. Smart Structures and Systems, An International Journal,2015, 16(6):1003-1021  
    64 Grouthier C, Michelin S, Bourguet R, et al. On the e ciency of energy harvesting using vortex-induced vibrations of cables. Journal of Fluids and Structures, 2014, 49: 427-440  
    65康厚军, 赵跃宇, 王连华. 斜拉桥中拉索对桥面动力特性的影响. 动力学与控制学报, 2007, 5(1): 44-49 (Kang Houjun, Zhao Yueyu, Wang Lianhua. Theoretical considerations for e ects of cables on deck of cable-stayed bridges. Journal of Dynamics and Control,2007, 5(1): 44-49 (in Chinese))
    66 Park NG, Lee S, Kim HK, et al. Vibration of initially stressed beam with discretely spaced multiple elastic supports. KSME International Journal, 2004, 18(5): 733-741
    67 Johansson C, Pacoste C, Karoumi R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads. Computers and Structures, 2013, 119: 85-94  
    68 赵跃宇, 马建军, 刘齐建等. 简谐横载荷作用下Winkler 地基上有限长梁1/3 次亚谐共振分析. 地震工程与工程振动, 2011, 31(3):148-153(Zhao Yueyu, Ma Jianjun, Liu Qijian, et al. 1/3 subharmonic resonance of finite-length beams on the Winkler foundation subjected to harmonic lateral loads. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 148-153 (in Chinese))
    69 Wang LH, Ma JJ, Li LF, et al. Three-to-one resonant responses of inextensional beams on the elastic foundation. Journal of Vibration and Acoustics, 2013, 135(1): 48-65
    70 Mirghaderi R. Dynamic analysis of cable-stayed bridges. [PhD Thesis]. Purdue University, 1981
    71 Wang LH, Ma JJ, Peng J, et al. Large amplitude vibration and parametric instability of inextensional beams on the elastic foundation. International Journal of Mechanical Sciences, 2013, 67(1): 1-9
    72 Ouakad HM, Younis MI. Dynamic response of slacked singlewalled carbon nanotube resonators. Nonlinear Dynamics, 2012,67(2): 1419-1436  
    73 马建军. 土- 细长结构物相互作用的非线性动力学研究. [博士论文]. 长沙:湖南大学, 2012 (Ma Jianjun. Nonlinear dynamics response of the soil-slender structure system. [PhD Thesis]. Changsha: Hunan University, 2012 (in Chinese))
    74 Valsangkar AJ, Pradhanang R. Vibrations of beam-columns on twoparameter elastic foundations. Earthquake Engineering & Structural Dynamics, 1988, 16(2): 217-225  
    75 Lai YC, Bing YT, Lee WS, et al. Dynamic response of beams on elastic foundation. Journal of Structural Engineering, 2014, 118(3):853-858
    76 Eisenberger M. Vibration frequencies for beams on variable oneand two-parameter elastic foundations. Journal of Sound and Vibration,1994, 176(5): 577-584  
    77 Morfidis K. Vibration of Timoshenko beams on three-parameter elastic foundation. Computer and Structures, 2010, 88: 294-308  
    78 Pellicano F, Vakakis AF. Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation. Springer Netherlands, 2001
    79 Coskun I, Engin H. Non-linear vibrations of a beam on an elastic foundation. Journal of Sound Vibration, 1999, 223(3): 335-354  
    80 Zhu B, Leung AYT. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements. Computers & Geotechnics, 2009, 36(5): 743-750  
    81 Nayfeh AH, Nayfeh SA. Nonlinear normal modes of a continuous system with quadratic nonlinearities. ASME Journal of Vibration and Acousttics, 1995, 117(2), 199-205  
    82 Li R, Gong J. Analysis of laterally loaded pile in layered soils. Electronic Journal of Geotechnical Engineering, 2008, 13: 1-16
    83 Naggar MHE, Novak M. Nonlinear model for dynamic axial pile response. Journal of Geotechnical Engineering, 1994, 120(2): 308-329  
    84 Rovithis EN, Pitilakis KD, Mylonakis GE. Seismic analysis of coupled soil-pile-structure systems leading to the definition of a pseudonatural SSI frequency. Soil Dynamics and Earthquake Engineering,2009, 29(6): 1005-1015  
    85 Soneji BB, Jangid RS. Influence of soil-structure interaction on the response of seismically isolated cable-stayed bridge. Soil Dynamics & Earthquake Engineering, 2008, 28(4): 245-257  
    86 Chau KT, Yang X. Nonlinear interaction of soil-pile in horizontal vibration. Journal of Engineering Mechanics, 2005, 131(8): 847-858  
    87 Ma J, Peng J, Gao X, et al. Effect of soil-structure interaction on the nonlinear response of an inextensional beam on elastic foundation. Archive of Applied Mechanics, 2014, 85(2): 273-285
    88 吕建根, 韩强, 王荣辉. 地震作用下非弹性地基桩的3次超谐波 共振. 动力学与控制学报, 2015, 13(4): 278-282 (Lü Jiangen, Han Qiang, Wang Ronghui. Super-harmonic resonance of pile foundation under earthquake action. Journal of Dynamics and Control,2015, 13(4): 278-282 (in Chinese))
    89 Fujino Y, Warnitchai P, Pacheco BM. An experimental and analytical study of autoparametric resonance in a 3DOF model of cablestayed- beam. Nonlinear Dynamics, 1993, 4(2): 111-138
    90 Gimsing NJ. Cable Supported Bridges. Wiley, 1983
    91 Xia Y, Fujino Y. Auto-parametric vibration of a cable-stayed-beam structure under random excitation. Journal of Engineering Mechanics,2006, 132(3): 279-286  
    92 赵跃宇. 大跨径斜拉桥非线性动力学的模型与理论研究. [博士 论文]. 长沙:湖南大学, 2000 (ZhaoYueyu.Study of the nonlinear dynamical modeling theory of long-span cable-stayed bridge. [PhD Thesis]. Changsha: Hunan University, 2000 (in Chinese))
    93 赵跃宇, 蒋丽忠, 王连华等. 索-梁组合结构的动力学建模理论及 其内共振分析. 土木工程学报, 2004, 37(3): 69-72(Zhao Yueyu, Jiang Lizhong, Wang Lianhua, et al.The dynamical modeling theory and internal resonance of cable-beam composite structure. China Civil Engineering Journal,2004,37(3):69-72 (in Chinese))
    94 周海兵. 索- 梁组合结构非线性动力学实验研究. [博士论文]. 长沙:湖南大学, 2007 (Zhou Haibin.The experimental investigation on nonlinear dynamics of cable-beam structure. [PhD Thesis]. Changsha: Hunan University, 2007 (in Chinese))
    95 Fung RF, Lu LY, Huang SC. Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure. Journal of Sound and Vibration, 2002, 254(4): 717-726  
    96 Gattulli V, Lepidi M. Nonlinear interactions in the planar dynamics of cable-stayed beam. International Journal of Solids and Structures,2003, 40(18): 4729-4748  
    97 周粉霞. 索- 梁结构面内面外非线性耦合振动分析. [硕士论 文]. 武汉: 武汉理工大学, 2008 (Zhou Fenxia. Nonlinear in-plane and out-of-plane coupled vibration analysis of cable-beam structure. [Master Thesis]. Wuhan: Wuhan University of Technology, 2008 (in Chinese))
    98 郭少进. 索- 梁结构非线性振动分析. [硕士论文]. 武汉: 武汉理 工大学, 2007 (Guo Shaojin. Nonlinear vibration analysis of cablebeam structure. [Master Thesis]. Wuhan: Wuhan University of Technology, 2007 (in Chinese))
    99 Fung RF, Lu LY, Huang SC. Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure. Journal of Sound and Vibration, 2002, 254(4): 717-726  
    100 Wei MH, Xiao YQ, Liu HT. Bifurcation and chaos of a cable- beam coupled system under simultaneous internal and external resonances. Nonlinear Dynamics, 2012, 67(3): 1969-1984  
    101 Wei MH, Xiao YQ, Liu HT, et al. Nonlinear responses of a cablebeam coupled system under parametric and external excitations. Archive of Applied Mechanics, 2014, 84(2): 173-185  
    102 梁栋, 孙利民, 程纬等. 斜拉桥主梁振动对拉索阻尼器减振效果 的影响. 力学学报, 2009, 41(4): 563-574 (Liang Dong, Sun Limin, Cheng Wei, et al. Effect of girder's vibration on performance of cable dampers for cable-stayed bridges. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 563-574 (in Chinese))
    103 Wang ZQ, Sun CS, Zhao YY, et al. Modeling and nonlinear modal characteristics of the cable-stayed beam. European Journal of Mechanics -A/Solids, 2014, 47: 58-69  
    104 赵垗冰. 考虑温度效应的索梁结构建模及动力特性研究. [博士论 文]. 长沙:湖南大学, 2015 (Zhao Yaobing. Temperature effects on modeling and vibration properties of cable-stayed structures. [PhD Thesis]. Changsha: Hunan University, 2015 (in Chinese))
    105 Deng HQ, Li TJ, Xue BJ. Analysis of thermally induced vibration of cable-beam structures. Structural Engineering and Mechanics,2015, 53(3): 443-453  
    106 王涛, 沈锐利. 基于动力非线性有限元法的索-梁相关振动研究. 振动与冲击, 2015, 34(5): 159-167 (Wang Tao, Shen Ruili. Cablebeam vibration study with nonlinear dynamic FEM. Journal of Vibration and Shock. 2015, 34(5): 159-167 (in Chinese))
    107 孙测世. 大跨度斜拉桥非线性振动试验研究. [博士论文]. 长沙: 湖南大学, 2015 (Sun Ceshi. Experimental study of nonlinear vibrations of long-span cable-stayed bridge. [PhD Thesis]. Changsha: Hunan University, 2015 (in Chinese))
    108 吕建根, 赵跃宇, 王荣辉. 索拱组合结构的动力建模及其内共振 分析. 中南大学学报:自然科学版, 2010, 41(1): 316-321 (Lü Jiangen, Zhao Yueyu, Wang Ronghui. Dynamical modeling and internal resonance of cable-stayed arch structure. Journal of Central South University (Science and Technology),2010, 41(1): 316-321 (in Chinese))
    109 Kang HJ, Zhao YY, Zhu HP. Out-of-plane free vibration analysis of a cable-arch structure. Journal of Sound and Vibration, 2013,332(4): 907-921  
    110 Zhao YY, Kang HJ. In-plane free vibration analysis of cable-arch structure. Journal of Sound and Vibration, 2008, 312(3): 363-379  
    111 Virlogeux M. Cable vibration in cable-stayed bridges. Bridge Dynamics,1998, 56(2): 213-233
    112 亢战, 钟万勰. 斜拉桥参数共振问题的数值研究. 土木工程学报,1998, 31(4): 14-22 (Kang Zhan, ZhongWanxie. Numerical study on parameteric resonance of cable in cable stayed bridge. China Civil Engineering Journal , 1998, 31(4): 14-22 (in Chinese))
    113 张妍, 王怀磊, 杨杰. 斜拉桥索- 面- 塔三自由度非线性振动模 型及其1:2:1 内共振分析. 动力学与控制学报, 2010, 8(1): 62-66 (Zhang Yan, Wang Huailei, Yang Jie. Dynamics of a three degrees of freedom nonlinear vibration model of cables and bridge decks and towers with the frequency 1:2:1 internal resonance. Journal of Dynamics and Control, 2010, 8(1): 62-66 (in Chinese))
    114 汪至刚, 孙炳楠. 斜拉桥参数振动引起的拉索大幅振动. 工程力 学, 2001, 18(1): 103-109 (Wang Zhigang, Sun Bingnan. Cable vibration for cable stayed bridge by parametric response. Engineering Mechanics, 2001, 18(1): 103-109 (in Chinese))
    115 陈水生, 孙炳楠. 斜拉桥索- 桥耦合非线性参数振动数值研究. 土木工程学报, 2003, 36(4): 70-75 (Chen Shuisheng, Sun Bingnan. Numerical study on nonlinear parametric vibration of coupled cables and brid ge decks. China Civil Engineeringjournal, 2003,36(4): 70-75 (in Chinese))
    116 任淑琰. 斜拉桥拉索参数振动研究. [博士论文]. 上海: 同济大学,2007 (Ren Shuyan. Parametric oscillation of cables in cable-stayed 第3 期康厚军等:大跨度斜拉桥非线性振动模型与理论研究进展535 bridges. [PhD Thesis]. Shanghai:Tongji University, 2007 (in Chinese))
    117 周岱, 柳杰, 郭军慧等. 轴向激励下斜拉索大幅振动分析. 工程力 学, 2007, 24(3): 34-41 (Zhou Dai, Liu Jie, Guo Junhui, et al. Vibration response of cables in cable-stayed spatial structures under axial excitation. Engineering Mechanics, 2007, 24(3): 34-41 (in Chinese))
    118 谭长建, 祝兵. 大跨度斜拉桥索与桥面耦合振动分析. 西南交通 大学学报, 2007, 42(6): 726-731 (Tan Changjian, Zhu Bing. Coupled vibration analysis of bridge deck and cable of long-span cablestayed bridge. Journal of Southwest Jiaotong University, 2007,42(6): 726-731 (in Chinese))
    119 郭翠翠. 斜拉索非线性参数振动与振动控制.[硕士论文]. 武汉: 华中科技大学, 2008 (Guo Cuicui. Nonlinear parametric vibration and vibration control of stay cables. [Master Thesis]. Wuhan: Huazhong University of Science and Technology, 2008 (in Chinese))
    120 彭然. 桥面激励下斜拉索非线性耦合振动研究. [硕士论文]. 哈 尔滨:哈尔滨工业大学, 2013 (Peng Ran. A research on nonlinear vibration of stayed cable subjected to deck excitation. [Master Thesis]. Harbin: Harbin Institute of Technology, 2013 (in Chinese))
    121 汪峰, 文晓旭, 刘章军. 斜拉桥塔- 索- 桥面连续耦合参数振动 特性分析. 应用力学学报, 2015, 32(2): 340-346 (Wang Feng, Wen Xiaoxu, Liu Zhangjun. Coupled vibration analysis of tower-cabledeck of long-span cable-stayed bridge. Chinese Journal of Applied Mechanics, 2015, 32(2): 340-346 (in Chinese))
    122 赵跃宇, 王涛, 康厚军等. 斜拉桥双索与桥面耦合的非线性参数振 动特性分析. 湖南大学学报: 自然科学版, 2008, 35(10): 1-5 (Zhao Yueyu, Wang Tao,Kang Houjun,et al. Performance study of the nonlinear parametric vibration of coupled bridge decks and two cables. Journal of Hunan University(Natural Sciences), 2008, 35(10):1-5 (in Chinese))
    123 Ren WX, Peng XL, Lin YQ. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge. Engineering Structures , 2005, 27(4): 535-548  
    124 Caetano E, Cunha A, Gattulli V, et al. Cable-deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modelling. Structural Control & Health Monitoring,2008, 15(3): 237-264  
    125 魏晓军. 大跨度斜拉桥索-桥耦合振动分析与实验. [硕士论文]. 长沙:中南大学, 2011 (Wei Xiaojun. Coupled vibration analysis and experiment of cable-bridge in large span cable-stayed bridge. [Master Thesis]. Changsha: Central South University, 2011 (in Chinese))
    126 Caetano E, Cunha A, Taylor CA. Investigation of dynamic cable interaction in a physical model of a cable-stayed bridge. Part I: modal analysis. Earthquake Engineering & Structural Dynamics, 2000,29(4): 481-498  3.0.CO;2-1">
    127 Caetano E, Cunha A, Taylor CA. Investigation of dynamic cabledeck interaction in a physical model of a cable-stayed bridge. Part II: seismic response. Earthquake Engineering & Structural Dynamics,2000, 29(4): 499-521  3.0.CO;2-A">
    128 Zuo XB, Li AQ. Numerical and experimental investigation on cable vibration mitigation using shape memory alloy damper. Structural Control & Health Monitoring, 2011, 18(1): 20-39
    129 Ouni MHE, Kahla NB, Preumont A. Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Engineering Structures, 2012, 45: 244-256  
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1625) PDF downloads(1957) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return