Citation: | Yun Wanying, Lü Zhenzhou, Jiang Xian. AN EFFICIENT METHOD FOR FAILURE PROBABILITY-BASED MOMENT-INDEPENDENT SENSITIVITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1004-1012. DOI: 10.6052/0459-1879-15-411 |
1 Saltelli A. Sensitivity analysis for importance assessment. Risk Analysis, 2002, 22(3): 579-590
|
2 Borgonovo E, Apostolakis GE. A new importance measure for risk-informed decision-making. Reliability Engineering and System Safety, 2001, 72(2): 193-212
|
3 Borgonovo E, Apostolakis GE, Tarantola S, et al. Comparison of local and global sensitivity analysis techniques in probability safety assessment. Reliability Engineering and System Safety, 2003, 79: 175-185
|
4 Saltelli A, Ratto M, Andreffs T, et al. Global Sensitivity Analysis. The Primer. John Wiley & Sons, 2008
|
5 Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analysis for model output: a comparison of selected techniques. Reliability Engineering and System Safety, 1990, 28(2): 229-253
|
6 Iman RL, Johnson ME, Watson Jr CC. Sensitivity analysis for computer model projections of hurricane losses. Risk analysis, 2005, 25(5): 1277-1297
|
7 Zhang XF, Pandey MD. An effective approximation for variancebased global sensitivity analysis. Reliability Engineering and System Safety, 2014, 121: 164-174
|
8 郝文锐,吕震宙,魏鹏飞. 多项式输出中相关变量的重要性测度分析. 力学学报,2012,44(1): 167-173 (HaoWenrui, Lü Zhenzhou, Wei Pengfei. Importance measure of correlated variables in polynomial output. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 167-173 (in Chinese))
|
9 Wei P, Lu ZZ, Song JW. A new variance-based global sensitivity analysis technique. Computation Physics Communication, 2013, 184(10): 2540-2551
|
10 Deman G, Konakli K, Sudret B, et al. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in mult-layered hydrogeological model. Reliability Engineering and System Safety, 2016, 147: 156-169
|
11 Pianosi F, Wagener T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environmental Modelling & Software, 2015, 67: 1-11
|
12 Borgonovo E. A new uncertainty importance measure. Reliability Engineering and System Safety, 2007, 92(6): 771-784
|
13 Zhou CC, Lu ZZ, Zhang LG, et al. Moment independent sensitivity analysis with correlations. Applied Mathematical Modelling, 2014, 38(19): 4885-4896
|
14 Camboa F, Klein T, Lagnoux A. Sensitivity analysis based on Cramer von Mises Distance. arXiv: 1506.04133 [math.PR], 1-20
|
15 Cui LJ, Lu ZZ, Zhao XP. Moment-independent importance measure of basic random variable and its probability density evolution solution. Science China Technological Sciences, 2010, 53(4): 1138-1145
|
16 Li LY, Lu ZZ, Feng J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution. Structural Safety, 2012, 38: 40-47
|
17 张磊刚, 吕震宙,陈军. 基于失效概率的矩独立重要性测度的高效算法. 航空学报,2014,35(8): 2199-2206 (Zhang Leigang, Lü Zhenzhou, Chen Jun. An efficient method of failure probabilitybased moment-independent importance measure. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2199-2206 (in Chinese))
|
18 Wei PF, Lu ZZ, Hao WR, et al. Efficient sampling methods for global reliability sensitivity analysis. Computation Physics Communication, 2012, 183(8): 1728-1743
|
19 Plischke E, Borgonovo E, Smith CL. Global sensitivity measures from given data. European Journal of Operational Research, 2013, 226(3): 536-550
|
20 Zhai QQ, Yang J, Zhao Y. Space-partition method for the variancebased sensitivity analysis: Optimal partition scheme and comparative study. Reliability Engineering and System Safety, 2014, 131: 66-82
|
21 Mood AM, Graybill FA, Boes DC. Introduction to the Theory of Statistics. 3rd edn. McGraw-Hill, 1974
|
22 Harbitz A. An efficient sampling method for probability of failure calculation. Structural Safety, 1986, 3(2): 109-115
|
23 Melchers RE. Importance sampling in structural system. Structural Safety, 1989, 6(1): 3-10
|
24 Au SK, Beck JL. A new adaptive importance sampling scheme. Structural Safety, 1999, 21(2): 135-158
|
25 Au SK, Beck JL. Importance sampling in high dimensions. Structural Safety, 2003, 25(2): 139-163
|
26 戴鸿哲,薛国锋,王伟. 基于小波阈值密度的自适应重要抽样方法. 力学学报,2014, 46(3): 480-484 (Dai Hongzhe, Xue Guofeng, Wang Wei. A wavelet thresholding density-based adaptive importance sampling method. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484 (in Chinese))
|
27 Hasfer AM, Lind NC. Exact and invariant second moment code format. Journal of Engineering Mechanics, ASCE, 1974, 100(1): 111-121
|
28 Dai HZ,WangW. Application of low-discrepancy sampling method in structural reliability analysis. Structural Safety, 2009, 31(1): 55-64
|
29 Sobol IM. Uniformly distributed sequences with additional uniformity properties. USSR Computational Mathematics and Mathematical Physics, 1976, 16: 236-242
|
30 Sobol IM. On quasi-Monte Carlo integrations. Mathematics and Computers in Simulation, 1998, 47(2): 103-112
|
[1] | Cao Chong, Cheng Linsong, Zhang Xiangyang, Jia Pin, Shi Junjie. SEEPAGE PROXY MODEL AND PRODUCTION FORECAST METHOD BASED ON MULTIVARIATE AND SMALL SAMPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2345-2354. DOI: 10.6052/0459-1879-21-155 |
[2] | Song Jingwen, Lü Zhenzhou. INVESTIGATION OF THE RELATION OF IMPORTANCE ANALYSIS INDICES FOR MODEL WITH CORRELATED INPUTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 601-610. DOI: 10.6052/0459-1879-13-369 |
[3] | Dai Hongzhe, Xue Guofeng, Wang Wei. A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484. DOI: 10.6052/0459-1879-13-303 |
[4] | Ren Limei, Xu Wei, Xiao Yuzhu, Wang Wenjie. FIRST EXCURSION PROBABILITIES OF DYNAMICAL SYSTEMS BY IMPORTANCE SAMPLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 648-652. DOI: 10.6052/0459-1879-2012-3-20120324 |
[5] | Hongzhe Dai Wei Zhao Wei Wang. An efficient adaptive importance samping method for structural reliability analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1133-1140. DOI: 10.6052/0459-1879-2011-6-lxxb2010-805 |
[6] | Shufang Song, Zhenzhou Lu. Reliability sensitivity analysis based on subset simulation and importance sampling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 654-662. DOI: 10.6052/0459-1879-2008-5-2007-274 |
[7] | Shufang Song, Zhenzhou Lu, Lin Fu. Reliability sensitivity algorithm based on line sampling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 564-570. DOI: 10.6052/0459-1879-2007-4-2006-220 |
[8] | An adaptive importance sampling algorithm and its application for multiple failure modes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 705-711. DOI: 10.6052/0459-1879-2006-5-2005-023 |
[9] | THE APPLICATION OF IMPORTANT SAMPLING METHOD IN TUBULAR JOINT FATIGUE RELIABILITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(3): 359-362. DOI: 10.6052/0459-1879-1996-3-1995-341 |
[10] | THE RECONSTRUCTION OF 3D TEMPERAIURE DISTRIBUTION IN HEAT FLOW BY SAMPLING THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 8-13. DOI: 10.6052/0459-1879-1995-S-1995-497 |
1. |
许灿,朱平,刘钊. 平纹机织碳纤维复合材料多尺度随机力学性能层次敏感性. 机械工程学报. 2021(14): 213-222 .
![]() |