EI、Scopus 收录
中文核心期刊
Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392
Citation: Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392

FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES

  • Received Date: October 26, 2015
  • Revised Date: May 31, 2016
  • If the parameters are not completely independent for holonomic systems, it is called holonomic systems with redundant coordinates. In order to study the forces of constraints for holonomic systems, we use the Lagrange equations with multiplicators of redundant coordinates or the first kind of Lagrange equations. Because there are no forces of constraints in the second kind of Lagrange equations. In some mechanical problems, the forces of constraints should not be equal to zero. In other conditions, the forces of constraints are very tiny. However, if the forces of constraints are all equal to zero, we called the free motion of constraints mechanical systems. This paper presents the free motion of holonomic system with redundant coordinates. At first, the differential equations of motion of the system are established according to d'Alembert-Lagrange principle. Secondly, the form of forces of constraints is determined by using the equations of constraints and the equations of motion. Finally, the condition under which the system has a free motion is obtained. The number of this conditions is equal to the constraints equation's, its depend on the kinetic energy, generalized forces and constraints equations. If the two arbitrary conditions are given, the third one should be obtained when the system becomes free motion. At the end, some examples are given to illustrate the application of the methods and results.
  • 1 Lagrange JL. Mécanique Analytique. Paris: Jaques Gabay, 2006
    2 梅凤翔. 分析力学. 北京: 北京理工大学出版社,2013 (Mei Fengxiang. Analytical Mechanics. Beijing: Beijing Institute of Techanology Press, 2013 (in Chinese))
    3 朱照宣, 周起钊, 殷金生. 理论力学. 北京: 北京大学出版社, 1982 (Zhu Zhaoxuan, Zhou Qizhao, Yin Jinsheng. Theoretical Mechanics. Beijing: Peking University Press, 1982 (in Chinese))
    4 Hurtado JE, Sinclair AJ. Lagrangian mechanics of overparameterized systems. Nonlinear Dynamics, 2011, 66: 201-212
    5 Лypъе A И. Aналитическая Механика. Москва: ФИЗМAТГИЗ,1961
    6 陈滨. 分析力学. 第二版. 北京: 北京大学出版社,2012 (Chen Bin. Analytical Mechanics. 2nd edn. Beijing: Peking University Press, 2012 (in Chinese))
    7 梅凤翔, 刘桂林. 分析力学基础. 西安: 西安交通大学出版社, 1987 (Mei Fengxiang, Liu Guilin. The Foundations of Analytical Mechanics. Xi’an: Xi’an Jiaotong University Press, 1987 (in Chinese))
    8 Brogliato B, Goeleven D. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody System Dynamics, 2015, 35: 39-61
    9 Wojtyra M, Fraczek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody System Dynamics, 2013, 30: 153-171
    10 Whittaker ET. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Cambridge: Cambridge University Press, 1970, Sect. 24 & 87
    11 刘延柱. 高等动力学. 北京: 高等教育出版社, 2001 (Liu Yanzhu. Advanced Dynamics. Beijing: Higher Education Press, 2001 (in Chinese))
    12 尚玫. 高等动力学. 北京: 机械工业出版社, 2013 (Shang Mei. Advanced Dynamics. Beijing: China Mechine Press, 2013 (in Chinese))
    13 Jungnickel U. Differential-algebraic equations in Riemannian spaces and applications to multibody system dynamics. ZAMM, 1994, 74: 409-415
    14 梅凤翔. 非完整系统的自由运动和非完整性的消失. 力学学报, 1994, 26(6): 470-476 (Mei Fengxiang. The freedom motion of nonholonomic system and disappearance of nonholonomic property. Chinese Journal of Theoretical and Mechanics, 1994, 26(6): 470-476 (in Chinese))
    15 Зегжда С А,Солтаханов ШХ,Юшков МП. Уравнения Движения Неголономых Систем и Вариационные Принципы Механики. Новый Класс Задач Управления. Москва: ФИЗМАТЛИТ, 2005
    16 杰格日达CA,索尔塔哈诺夫X H, 尤士科夫M P. 梅凤翔译. 非完整系统的运动方程和力学的变分原理,新一类的控制问题. 北京:北京理工大学出版社, 2007 (Zegzda SA, Soltakhanov Sh Kh, Yushkov MP. Equations of Motion of Nonholonomic Systems and Variational Principle of Mechanics. Beijing: Beijing Institute of Techanology Press, 2007 (in Chinese))
    17 Терmычны? Даурu B. Ю. Адаптивная механика [М]: Наука, 1998
    18 丁光涛. 状态空间中约束系统的运动方程. 动力学与控制学报, 2015, 13(4): 250-255 (Ding Guangtao. The equation motion of constrained systems in state space. Journal of Dynamics and Control, 2015, 13(4): 250-255 (in Chinese))
    19 郭仲衡. 从冰橇问题谈起. 现代数学和力学. 徐州: 中国矿业大 学出版社, 1993: 451-453 (Guo Zhongheng. From the problem of sledge. The Modern Mathematics and Mechanics. Xuzhou: China Mining University Press, 1993: 451-453 (in Chinese))
  • Related Articles

    [1]Chang Xinquan, Zhang Kexue, Wang Jun, Xia Guodong. DRAG FORCES ON NON-SPHERICAL PARTICLES IN THE FREE MOLECULAR REGIME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1251-1260. DOI: 10.6052/0459-1879-24-016
    [2]Zhou Yusheng, Wen Xiangrong, Wang Zaihua. ON THE NONHOLONOMIC CONSTRAINTS AND MOTION CONTROL OF WHEELED MOBILE STRUCTURES1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1143-1156. DOI: 10.6052/0459-1879-19-257
    [3]Yikun Wang, Lin Wang. PARAMETRIC RESONANCE OF A CANTILEVERED PIPE CONVEYING FLUID SUBJECTED TO DISTRIBUTED MOTION CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 558-568. DOI: 10.6052/0459-1879-18-295
    [4]Ma Xiuteng, Zhai Yanbo, Xie Shouyong. HHT METHOD WITH CONSTRAINTS VIOLATION CORRECTION IN THE INDEX 2 EQUATIONS OF MOTION FOR MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 175-181. DOI: 10.6052/0459-1879-16-275
    [5]Liu Fei, Hu Quan, Zhang Jingrui. CONSTRAINT FORCE ALGORITHM FOR TREE-LIKE MULITBODY SYSTEM DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 201-212. DOI: 10.6052/0459-1879-15-201
    [6]PERIODIC MOTIONS AND ROBUST STABILITY OF THE MULTI-DEGREE-OF-FREEDOM SYSTEMS WITH CLEARANCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 74-83. DOI: 10.6052/0459-1879-1997-1-1995-198
    [7]THE FREE MOT1ON OF NONHOLONOMIC SYSTEM AND DISAPPEARANCE OF THE NONHOLONOMIC PROPERTY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 470-476. DOI: 10.6052/0459-1879-1994-4-1995-569
    [8]STEADY FREE VORTEX RINGS IN AN INVISCID FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 529-536. DOI: 10.6052/0459-1879-1993-5-1995-675
    [9]利用对称性寻找浑沌运动[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 380-384. DOI: 10.6052/0459-1879-1993-3-1995-656
    [10]INVARIANT MANIFOLD OF STATIONARY MOTION FOR CHAPLYGIN'S NONHOLONOMIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 639-644. DOI: 10.6052/0459-1879-1992-5-1995-786
  • Cited by

    Periodical cited type(1)

    1. 陈菊,郭永新,梅凤翔. 有多余坐标的可控完整力学系统的自由运动与初始运动. 动力学与控制学报. 2019(05): 408-412 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (959) PDF downloads (434) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return